The Cox regression, a semi-parametric method of survival analysis, is extremely popular in biomedical applications. The proportional hazards assumption is a key requirement in the Cox model. To accommodate non-proportional hazards, we propose to parameterise the shape parameter of the baseline hazard function using the additional, separate Cox-regression term which depends on the vector of the covariates. We call this model the double-Cox model. The R programs for fitting the double-Cox model are available on Github. We formally introduce the double-Cox model with shared frailty and investigate, by simulation, the estimation bias and the coverage of the proposed point and interval estimation methods for the Gompertz and the Weibull baseline hazards. In applications with low frailty variance and a large number of clusters, the marginal likelihood estimation is almost unbiased and the profile likelihood-based confidence intervals provide good coverage for all model parameters. We also compare the results from the over-fitted double-Cox model to those from the standard Cox model with frailty in the case of the scale-only proportional hazards. Results of our simulations on the bias and coverage of the model parameters are provided in 12 Tables and in 145 A4 Figures, 178 pages in total.
翻译:Cox回归是一种生存分析的半参数方法,在生物医学应用中极为流行。比例危害假设是Cox模型中的一项关键要求。为了适应非相称的危害,我们提议使用取决于共变体矢量的额外、独立的Cox回归术语,对基准危险函数的形状参数进行参数比较。我们称这个模型为双倍回归模型。Github提供了安装双倍毒性模型的R程序。我们正式采用双倍毒性模型,共享脆弱,并通过模拟、估计偏差以及Gompertz和Weibull基准危险的拟议点和间隔估计方法的覆盖面进行调查。在使用低脆弱度差异和大量集群的应用中,边缘可能性估计几乎是无偏差的,基于剖面概率的信任间隔为所有模型参数提供了良好的覆盖。我们还将过分配制的双倍毒性模型的结果与标准Cox模型的结果进行比较,在标准克克斯模型中,以易变弱度的模型中,通过模拟、估计偏差和间隔方法对Gompertz和Weball基准危险进行了调查。在模型中提供的模型中,关于总偏差和范围。