Reorientation (turning in plane) plays a critical role for all robots in any field application, especially those that in confined spaces. While important, reorientation remains a relatively unstudied problem for robots, including limbless mechanisms, often called snake robots. Instead of looking at snakes, we take inspiration from observations of the turning behavior of tiny nematode worms C. elegans. Our previous work presented an in-place and in-plane turning gait for limbless robots, called an omega turn, and prescribed it using a novel two-wave template. In this work, we advance omega turn-inspired controllers in three aspects: 1) we use geometric methods to vary joint angle amplitudes and forward wave spatial frequency in our turning equation to establish a wide and precise amplitude modulation and frequency modulation on omega turn; 2) we use this new relationship to enable robots with fewer internal degrees of freedom (i.e., fewer joints in the body) to achieve desirable performance, and 3) we apply compliant control methods to this relationship to handle unmodelled effects in the environment. We experimentally validate our approach on a limbless robot that the omega turn can produce effective and robust turning motion in various types of environments, such as granular media and rock pile.
翻译:调整方向( 翻转飞机) 在任何野外应用中, 特别是在封闭空间中, 对所有机器人都起着关键作用。 虽然重要的是, 调整方向对于机器人来说仍然是一个相对没有研究的问题, 包括无肢机制, 通常称为蛇机器人。 我们从观察小线虫 C. ELegans 的转变行为中吸取灵感。 我们以前的工作显示的是无肢机器人在位置上和机内转动运动, 称为 omega 转弯, 并使用新型的双波模板来规定它。 在这项工作中, 我们推进奥美转动控制器, 有三个方面:(1) 我们使用几何方法来改变共同角度的振动和前波空间频率, 而不是看蛇蛇。 我们从观察小线虫 C. Elegans 的变动中, 而是从观察小线虫虫子 C. Elegans 的变形体的变形。 我们使用这种新关系来让内部自由度较低的机器人( 即身体上的接合器更少) 能够达到理想的性表现。 。 和 3) 我们用不合规的控制方法来应对这种关系, 来应对这个关系, 在转动不塑的媒体环境中不动的转动中, 。