We propose the framework of dual convexified convolutional neural networks (DCCNNs). In this framework, we first introduce a primal learning problem motivated by convexified convolutional neural networks (CCNNs), and then construct the dual convex training program through careful analysis of the Karush-Kuhn-Tucker (KKT) conditions and Fenchel conjugates. Our approach reduces the computational overhead of constructing a large kernel matrix and more importantly, eliminates the ambiguity of factorizing the matrix. Due to the low-rank structure in CCNNs and the related subdifferential of nuclear norms, there is no closed-form expression to recover the primal solution from the dual solution. To overcome this, we propose a highly novel weight recovery algorithm, which takes the dual solution and the kernel information as the input, and recovers the linear weight and the output of convolutional layer, instead of weight parameter. Furthermore, our recovery algorithm exploits the low-rank structure and imposes a small number of filters indirectly, which reduces the parameter size. As a result, DCCNNs inherit all the statistical benefits of CCNNs, while enjoying a more formal and efficient workflow.
翻译:我们提议建立双相融合的神经神经网络(DCCNNs)框架。在这个框架内,我们首先引入了由混为一体的神经网络(CCNNS)驱动的原始学习问题,然后通过仔细分析Karush-Kuhn-Tucker(KKT)条件和Fenchel conjugates(Fenchel)来建立双相融合的神经网络(DCCNNs),我们的方法减少了建造大型内核矩阵的计算间接费用,更重要的是,消除了该矩阵的模糊性。由于CCNS的低级结构和相关的核规范的次等分化,我们没有封闭式的表达方式来从双重解决方案中恢复原始解决方案。为了克服这一点,我们提出了一种非常新颖的重力回收算法,将双重解决方案和内核信息作为投入,并恢复革命层的线性重量和输出,而不是重量参数参数。此外,我们的回收算法利用了低级结构,并间接地强加了少量过滤器,从而降低了参数大小。作为结果,DCCNs在享有更正式的工作流程的同时继承了CCN的所有统计利益。