We extend the seminal work by Polyanskiy (2017) on massive uncoordinated access to the case where the number of active users is random and unknown a priori. We define a random-access code accounting for both misdetection (MD) and false alarm (FA), and derive a random-coding achievability bound for the Gaussian multiple-access channel. Our bound captures the fundamental trade-off between MD and FA probabilities. The derived bound suggests that, for the scenario considered in Polyanskiy (2017), lack of knowledge of the number of active users entails a small penalty in terms of power efficiency. For example, our bound shows that 0.5-0.7 dB extra power is required to achieve both MD and FA probabilities below 0.1 compared to the case in which the number of active users is known a priori. Taking both MD and FA into account, we show that some of the recently proposed massive random access schemes are highly suboptimal with respect to our bound.
翻译:我们扩展了Polyanskiy(2017年)关于大规模无协调访问的开创性工作,即大量无协调访问活动用户数量是随机的和事先未知的。我们定义了随机访问代码,其中既包括检测错误(MD)和假警报(FA),也包括随机编码可达到高山多访问频道。我们的连接捕捉了MD和FA概率之间的基本权衡。从中得出的约束显示,在Polyanskiy(2017年)中考虑的情况中,缺乏对活动用户数量的了解会在电量效率方面造成轻微的处罚。例如,我们的约束显示,要实现MD和FA概率都低于0.1,需要0.5-0.7 dB的额外权力,而事先知道活动用户人数的情况则需要0.1。考虑到MD和FA,我们发现,最近提出的大规模随机访问计划中有些与我们的约束相比,非常不理想。