Most existing personalization systems promote items that match a user's previous choices or those that are popular among similar users. This results in recommendations that are highly similar to the ones users are already exposed to, resulting in their isolation inside familiar but insulated information silos. In this context, we develop a novel recommendation framework with a goal of improving information diversity using a modified random walk exploration of the user-item graph. We focus on the problem of political content recommendation, while addressing a general problem applicable to personalization tasks in other social and information networks. For recommending political content on social networks, we first propose a new model to estimate the ideological positions for both users and the content they share, which is able to recover ideological positions with high accuracy. Based on these estimated positions, we generate diversified personalized recommendations using our new random-walk based recommendation algorithm. With experimental evaluations on large datasets of Twitter discussions, we show that our method based on \emph{random walks with erasure} is able to generate more ideologically diverse recommendations. Our approach does not depend on the availability of labels regarding the bias of users or content producers. With experiments on open benchmark datasets from other social and information networks, we also demonstrate the effectiveness of our method in recommending diverse long-tail items.
翻译:大多数现有个人化系统都促进与用户先前的选择或类似用户中流行的选择相匹配的项目。这导致建议与用户已经接触过的建议非常相似,导致他们孤立在熟悉但隔绝的信息库中。在这方面,我们开发了一个新的建议框架,目的是利用用户项目图的随机随机探索来改善信息多样性。我们侧重于政治内容建议问题,同时解决适用于其他社会和信息网络中个人化任务的一般问题。在社会网络上推荐政治内容时,我们首先提出一个新的模型来估计用户的意识形态立场和他们共享的内容,从而能够非常准确地恢复意识形态立场。根据这些估计,我们利用我们新的随机行走建议算法,产生了多样化的个人化建议。通过对推特讨论的大型数据集进行实验性评估,我们展示了我们基于memph{random swalks with cemassure} 的方法能够产生更具意识形态多样性的建议。我们的方法并不取决于是否有关于用户或内容生产者偏见的标签。我们从其他社会信息网络中推荐的远程基准数据方法,我们也可以在建议中进行实验。