We study the problem of maximizing a monotone submodular function subject to a Multiple Knapsack constraint. The input is a set $I$ of items, each has a non-negative weight, and a set of bins of arbitrary capacities. Also, we are given a submodular, monotone and non-negative function $f$ over subsets of the items. The objective is to find a packing of a subset of items $A \subseteq I$ in the bins such that $f(A)$ is maximized. Our main result is an almost optimal polynomial time $(1-e^{-1}-\eps)$-approximation algorithm for the problem, for any $\eps>0$. The algorithm relies on a structuring technique which converts a general multiple knapsack constraint to a constraint in which the bins are partitioned into groups of exponentially increasing cardinalities, each consisting of bins of uniform capacity. We derive the result by combining structuring with a refined analysis of techniques for submodular optimization subject to knapsack constraints.


翻译:我们研究在多Knapsack 限制下最大限度地增加单调子模块函数的问题。 输入是一套固定的物品美元, 每个物品都有非负的重量, 以及一组任意能力的垃圾箱。 此外, 我们得到一个子模块、 单调和非负的功能$f$, 超过这些物品的子集。 目标是在垃圾箱中找到一个子项的包装 $A\ subseete I$, 使美元( A) 最大化。 我们的主要结果就是对问题进行几乎最优化的聚度时间$( 1- e ⁇ -1}- eps) $- 约合的算法, 对于任何 $\ ep>0 。 算法依赖于一种结构化技术, 将普通的多个 knapsack 约束转换为限制, 将垃圾桶分成指数增加的基点组, 每一组由统一能力箱组成。 我们通过将结构与对亚模块优化的子模块优化的优化的调整技术分析得出结果, 受 knapsack 约束 的限制 。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
深度学习界圣经“花书”《Deep Learning》中文版来了
专知会员服务
234+阅读 · 2019年10月26日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
已删除
将门创投
7+阅读 · 2019年10月10日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Arxiv
0+阅读 · 2021年4月12日
Arxiv
4+阅读 · 2019年2月8日
VIP会员
相关VIP内容
相关资讯
已删除
将门创投
7+阅读 · 2019年10月10日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Top
微信扫码咨询专知VIP会员