Segmentation models have been found to be vulnerable to targeted/non-targeted adversarial attacks. However, damaged predictions make it easy to unearth an attack. In this paper, we propose semantically stealthy adversarial attacks which can manipulate targeted labels as designed and preserve non-targeted labels at the same time. In this way, we may hide the corresponding attack behaviors. One challenge is making semantically meaningful manipulations across datasets/models. Another challenge is avoiding damaging non-targeted labels. To solve the above challenges, we consider each input image as prior knowledge to generate perturbations. We also design a special regularizer to help extract features. To evaluate our model's performance, we design three basic attack types, namely `vanishing into the context', `embedding fake labels', and `displacing target objects'. The experiments show that our stealthy adversarial model can attack segmentation models with a relatively high success rate on Cityscapes, Mapillary, and BDD100K. Finally, our framework also shows good generalizations across datasets/models empirically.


翻译:人们发现,分类模型很容易受到目标/非目标对称攻击的攻击。 但是, 损坏的预测使得很容易发现攻击。 在本文中, 我们提出隐性隐性对抗性攻击, 可以同时将目标标签作为设计并保存非目标标签。 这样, 我们可能隐藏相应的攻击行为。 一项挑战是使数据集/ 模型之间发生具有语义意义的操作。 另一个挑战是避免损坏的非目标标签。 为了解决上述挑战, 我们把每个输入图像视为先前的知识, 以产生扰动。 我们还设计了一种特殊的定序器来帮助提取特征。 为了评估我们的模型的性能, 我们设计了三种基本的攻击类型, 即“ 切换到环境”、“ 编造假标签” 和“ 变异目标对象 ” 。 实验显示, 我们的隐性对抗性对立性模型可以攻击分离模型, 在城市景象、 Mapilly 和 BDDD100K 上的成功率相对较高。 最后, 我们的框架还展示了跨数据设置/ 模型经验的很好的概括性。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
专知会员服务
44+阅读 · 2020年10月31日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
已删除
将门创投
4+阅读 · 2017年12月5日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年11月29日
Deflecting Adversarial Attacks
Arxiv
8+阅读 · 2020年2月18日
VIP会员
相关VIP内容
专知会员服务
44+阅读 · 2020年10月31日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
已删除
将门创投
4+阅读 · 2017年12月5日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员