Connected and Autonomous Vehicles (CAVs) with their evolving data gathering capabilities will play a significant role in road safety and efficiency applications supported by Intelligent Transport Systems (ITS), such as Traffic Signal Control (TSC) for urban traffic congestion management. However, their involvement will expand the space of security vulnerabilities and create larger threat vectors. In this paper, we perform the first detailed security analysis and implementation of a new cyber-physical attack category carried out by the network of CAVs against Adaptive Multi-Agent Traffic Signal Control (AMATSC), namely, coordinated Sybil attacks, where vehicles with forged or fake identities try to alter the data collected by the AMATSC algorithms to sabotage their decisions. Consequently, a novel, game-theoretic mitigation approach at the application layer is proposed to minimize the impact of such sophisticated data corruption attacks. The devised minimax game model enables the AMATSC algorithm to generate optimal decisions under a suspected attack, improving its resilience. Extensive experimentation is performed on a traffic dataset provided by the City of Montreal under real-world intersection settings to evaluate the attack impact. Our results improved time loss on attacked intersections by approximately 48.9%. Substantial benefits can be gained from the mitigation, yielding more robust adaptive control of traffic across networked intersections.


翻译:具有不断演变的数据收集能力的连接和自主车辆(CAVs)将在公路安全和效率应用方面发挥重要作用,这些应用得到智能运输系统(ITS)的支持,如交通信号控制(TSC),用于城市交通拥堵管理;然而,它们的参与将扩大安全脆弱性的空间,并造成更大的威胁矢量。在本文件中,我们进行了首次详细的安全分析,并实施了由CAVs网络进行的新的网络物理攻击类别,以对抗适应性多点交通信号控制(AMATSC),即协调Sybil袭击,使用伪造或假冒身份的车辆试图改变AMATSC算法收集的数据,以破坏其决定。因此,提议在应用层采取新的游戏理论减缓方法,以尽量减少这种复杂的数据腐败袭击的影响。设计的小式游戏模式使AMATSC算法能够在可疑袭击下产生最佳决策,提高其复原力。对蒙特利尔市在现实世界交叉环境中提供的交通数据集进行了广泛的实验,以评估攻击影响。我们改进了对被攻击的交通阻隔路影响的时间损失,通过大约48.9%的快速控制,从而获得了对受攻击的网络进行更稳健健健的平衡控制。

0
下载
关闭预览

相关内容

【经典书】算法博弈论,775页pdf,Algorithmic Game Theory
专知会员服务
148+阅读 · 2021年5月9日
最新《知识驱动的文本生成》综述论文,44页pdf
专知会员服务
76+阅读 · 2020年10月13日
【KDD2020-Tutorial】自动推荐系统,Automated Recommendation System
【经典书】算法C语言实现,Algorithms in C. 672页pdf
专知会员服务
81+阅读 · 2020年8月13日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
计算机 | ICDE 2020等国际会议信息8条
Call4Papers
3+阅读 · 2019年5月24日
计算机 | 中低难度国际会议信息6条
Call4Papers
7+阅读 · 2019年5月16日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
计算机 | CCF推荐会议信息10条
Call4Papers
5+阅读 · 2018年10月18日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
0+阅读 · 2021年7月15日
VIP会员
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
计算机 | ICDE 2020等国际会议信息8条
Call4Papers
3+阅读 · 2019年5月24日
计算机 | 中低难度国际会议信息6条
Call4Papers
7+阅读 · 2019年5月16日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
计算机 | CCF推荐会议信息10条
Call4Papers
5+阅读 · 2018年10月18日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员