Uniform sampling of bipartite graphs and hypergraphs with given degree sequences is necessary for building null models to statistically evaluate their topology. Because these graphs can be represented as binary matrices, the problem is equivalent to uniformly sampling $r \times c$ binary matrices with fixed row and column sums. The trade algorithm, which includes both the curveball and fastball implementations, is the state-of-the-art for performing such sampling. Its mixing time is currently unknown, although $5r$ is currently used as a heuristic. In this paper we propose a new distribution-based approach that not only provides an estimation of the mixing time, but also actually returns a sample of matrices that are guaranteed (within a user-chosen error tolerance) to be uniformly randomly sampled. In numerical experiments on matrices that vary by size, fill, and row and column sum distributions, we find that the upper bound on mixing time is at least $10r$, and that it increases as a function of both $c$ and the fraction of cells containing a 1.
翻译:暂无翻译