With the advancement of deep learning techniques, major cloud providers and niche machine learning service providers start to offer their cloud-based machine learning tools, also known as machine learning as a service (MLaaS), to the public. According to our measurement, for the same task, these MLaaSes from different providers have varying performance due to the proprietary datasets, models, etc. Federating different MLaaSes together allows us to improve the analytic performance further. However, naively aggregating results from different MLaaSes not only incurs significant momentary cost but also may lead to sub-optimal performance gain due to the introduction of possible false-positive results. In this paper, we propose Armol, a framework to federate the right selection of MLaaS providers to achieve the best possible analytic performance. We first design a word grouping algorithm to unify the output labels across different providers. We then present a deep combinatorial reinforcement learning based-approach to maximize the accuracy while minimizing the cost. The predictions from the selected providers are then aggregated together using carefully chosen ensemble strategies. The real-world trace-driven evaluation further demonstrates that Armol is able to achieve the same accuracy results with $67\%$ less inference cost.
翻译:随着深层学习技术的进步,主要云端提供商和特殊机器学习服务提供商开始向公众提供其云基机器学习工具,也称为机器学习服务(MLAAS),这些来自不同供应商的MLaaSes由于专利数据集、模型等的特性而业绩不同。 不同的MLaaaSes联合起来,使我们得以进一步改进分析性能。然而,从不同的MLaaSes获得的天真的汇总结果不仅带来巨大的瞬间成本,而且可能由于引入可能的虚假结果而带来亚最佳性能增益。根据我们的测量,这些来自不同供应商的MLaaaSes由于同一任务,其业绩表现因专利数据集、模型等而不同而不同。我们首先设计一个词汇组合算法,以统一不同供应商的产出标签。我们然后提出一个深层次的组合加固法学习基础,以尽量提高准确性,同时尽量减少成本。随后,选定供应商的预测将使用精心选择的精细的精细的精细的精细度计算结果合并在一起,然后用精细的精细的精细的精细的精细度战略将精细度合并成一个框架。