Image demoireing is a multi-faceted image restoration task involving both texture and color restoration. In this paper, we propose a novel multiscale bandpass convolutional neural network (MBCNN) to address this problem. As an end-to-end solution, MBCNN respectively solves the two sub-problems. For texture restoration, we propose a learnable bandpass filter (LBF) to learn the frequency prior for moire texture removal. For color restoration, we propose a two-step tone mapping strategy, which first applies a global tone mapping to correct for a global color shift, and then performs local fine tuning of the color per pixel. Through an ablation study, we demonstrate the effectiveness of the different components of MBCNN. Experimental results on two public datasets show that our method outperforms state-of-the-art methods by a large margin (more than 2dB in terms of PSNR).
翻译:图像解析是一个多面图像恢复任务, 涉及质地和颜色恢复。 在本文中, 我们提出一个新的多比例带状神经神经网络( MBCNN ) 来解决这个问题。 作为端到端解决方案, MBCNN 分别解决了两个子问题。 关于质地恢复, 我们提出一个可学习的带状过滤器( LBF) 来学习moire质地清除之前的频率。 关于颜色恢复, 我们提出一个两步调音调映射策略, 首先应用全球调调色图来纠正全球色变, 然后对每像素的颜色进行本地微调 。 我们通过熔化研究, 我们展示了 MBCNN 不同组成部分的有效性 。 两个公共数据集的实验结果显示, 我们的方法通过一个大的边距( PSNR 超过 2 dB ), 显示我们的方法超越了最先进的方法 。