We investigate novel parameter estimation and goodness-of-fit (GOF) assessment methods for large-scale confirmatory item factor analysis (IFA) with many respondents, items, and latent factors. For parameter estimation, we extend Urban and Bauer's (2021) deep learning algorithm for exploratory IFA to the confirmatory setting by showing how to handle constraints on loadings and factor correlations. For GOF assessment, we explore simulation-based tests and indices that extend the classifier two-sample test (C2ST), a method that tests whether a deep neural network can distinguish between observed data and synthetic data sampled from a fitted IFA model. Proposed extensions include a test of approximate fit wherein the user specifies what percentage of observed and synthetic data should be distinguishable as well as a relative fit index (RFI) that is similar in spirit to the RFIs used in structural equation modeling. Via simulation studies, we show that: (1) the confirmatory extension of Urban and Bauer's (2021) algorithm obtains comparable estimates to a state-of-the-art estimation procedure in less time; (2) C2ST-based GOF tests control the empirical type I error rate and detect when the latent dimensionality is misspecified; and (3) the sampling distribution of the C2ST-based RFI depends on the sample size.


翻译:我们调查了与许多答复者、项目和潜在因素进行大规模确认性物品要素分析(IFA)的新型参数估计和完善评估方法,与许多答复者、项目和潜在因素共同调查了大规模确认性物品要素分析(IFA)的新参数估计和良好评估方法。关于参数估计,我们通过显示如何处理载荷限制和要素相互关系的制约,将城市和鲍尔的探索性深学习算法(2021年)扩展至确认性环境框架,以显示如何处理载荷限制和要素相关性的确认性设定。关于GOF的模拟测试和指数(2021年)的模拟测试方法,以测试深度神经网络能否区分观察到的数据和从适合的IFA模型中抽取的合成数据(IFA)和合成数据。拟议的扩展包括一个大致适合性的测试,其中用户具体说明观测和合成数据的百分比以及相对合适的指数(RFI)在结构方程模型模型中所使用的RFIFA。Va模拟研究显示:(1) 城市和Bauer的确认性扩展(2021年)算法的算算算出基于最新估计程序的估计数;(2) 基于GOSTGFIFA的试样比例的测试率和测测测测测为C的试的模型的模型大小。</s>

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
75+阅读 · 2022年6月28日
专知会员服务
51+阅读 · 2020年12月14日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年5月8日
Meta-Learning to Cluster
Arxiv
17+阅读 · 2019年10月30日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
相关基金
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员