Machine-learning force fields (MLFF) should be accurate, computationally and data efficient, and applicable to molecules, materials, and interfaces thereof. Currently, MLFFs often introduce tradeoffs that restrict their practical applicability to small subsets of chemical space or require exhaustive datasets for training. Here, we introduce the Bravais-Inspired Gradient-Domain Machine Learning (BIGDML) approach and demonstrate its ability to construct reliable force fields using a training set with just 10-200 geometries for materials including pristine and defect-containing 2D and 3D semiconductors and metals, as well as chemisorbed and physisorbed atomic and molecular adsorbates on surfaces. The BIGDML model employs the full relevant symmetry group for a given material, does not assume artificial atom types or localization of atomic interactions and exhibits high data efficiency and state-of-the-art energy accuracies (errors substantially below 1 meV per atom) for an extended set of materials. Extensive path-integral molecular dynamics carried out with BIGDML models demonstrate the counterintuitive localization of benzene--graphene dynamics induced by nuclear quantum effects and allow to rationalize the Arrhenius behavior of hydrogen diffusion coefficient in a Pd crystal for a wide range of temperatures.


翻译:机器- 学习力场应该准确、计算和数据高效,并适用于分子、材料及其界面。目前,MLFF经常引入权衡,限制其对化学空间小子子子的实用适用性,或要求为培训提供详尽的数据集。在这里,我们引入了Bravais- 由Bravais启发的Gradid- Domain 机器学习(BIGDML)方法,并展示了它有能力利用一套仅10-200个的训练,建立可靠的武力场,该训练只包含10-200个的、含有纯净质和含有缺陷的2D和3D半导体和金属的材料,以及表面的化学和物理原子和分子吸附剂。BIGDML模型对特定材料采用了完全相关的配对组,不承担原子相互作用的人工原子类型或本地化,并展示高数据效率和最新能源包状(含精度大大低于1米V/原子的材料)的成套材料。在BIGDML模型中,与BDMDMR Ex- Ex- Exmalimalimalalalalal- Ex- Excalizal- Excializalimal Exlimalimalimalimal Exlimal Excial Excial Excial Exmactal Excial Exiral ASyal ASyal Exmalimal Exmal Exmal Exmalitalital Exmactal Exmactal Ex压模型,展示了一种反制制成的磁波波波为制制制成成的磁制成的磁制成的反直成的磁波。

0
下载
关闭预览

相关内容

GitHub 发布的文本编辑器。
专知会员服务
76+阅读 · 2021年3月16日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
机器学习线性代数速查
机器学习研究会
19+阅读 · 2018年2月25日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【推荐】Python机器学习生态圈(Scikit-Learn相关项目)
机器学习研究会
6+阅读 · 2017年8月23日
Arxiv
45+阅读 · 2019年12月20日
VIP会员
相关VIP内容
相关资讯
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
机器学习线性代数速查
机器学习研究会
19+阅读 · 2018年2月25日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【推荐】Python机器学习生态圈(Scikit-Learn相关项目)
机器学习研究会
6+阅读 · 2017年8月23日
Top
微信扫码咨询专知VIP会员