Pretrained multilingual language models (LMs) can be successfully transformed into multilingual sentence encoders (SEs; e.g., LaBSE, xMPNET) via additional fine-tuning or model distillation on parallel data. However, it remains uncertain how to best leverage their knowledge to represent sub-sentence lexical items (i.e., words and phrases) in cross-lingual lexical tasks. In this work, we probe these SEs for the amount of cross-lingual lexical knowledge stored in their parameters, and compare them against the original multilingual LMs. We also devise a novel method to expose this knowledge by additionally fine-tuning multilingual models through inexpensive contrastive learning procedure, requiring only a small amount of word translation pairs. We evaluate our method on bilingual lexical induction (BLI), cross-lingual lexical semantic similarity, and cross-lingual entity linking, and report substantial gains on standard benchmarks (e.g., +10 Precision@1 points in BLI), validating that the SEs such as LaBSE can be 'rewired' into effective cross-lingual lexical encoders. Moreover, we show that resulting representations can be successfully interpolated with static embeddings from cross-lingual word embedding spaces to further boost the performance in lexical tasks. In sum, our approach provides an effective tool for exposing and harnessing multilingual lexical knowledge 'hidden' in multilingual sentence encoders.
翻译:训练有素的多语言语言模型(LMS)可以通过额外的微调或对平行数据进行模型蒸馏,成功地转化为多语种编码器(SES,例如,LBSE,xMPNET),通过对平行数据进行额外的微调或模型蒸馏,成功地将其成功转化成多语种词汇模型(SE,例如,LBSE,例如,LBSE,xMPNET),然而,仍然不能确定如何最好地利用其知识在跨语言词汇任务中代表次语种词汇学项目(例如,词和短语)。在这项工作中,我们对这些SES(例如,+10 precision@1点)进行了检测,并将其与原始多语言语言语言模型进行比较。我们还设计了一种新的方法,通过廉价的对比学习程序对多语言模型进行进一步的微调,只需要少量的单词翻译配对。我们评估了双语词汇感应(BLII)、跨语言语系相似性和跨语言连接实体的方法,并报告了标准基准(例如,加10 Precisionionion@1点)所取得的巨大收益,确认SEDE等SEBESEE可以被“重新连接成有效的跨语言跨语言的多语种的多语种的多语种语言模型。此外,我们还可以展示一个跨语言的跨语言模型,我们可以把一个跨语言的跨语言的跨语言的跨语言模型进行。