A well-known conjecture by Lov\'asz and Plummer from the 1970s asserted that a bridgeless cubic graph has exponentially many perfect matchings. It was solved in the affirmative by Esperet et al. (Adv. Math. 2011). On the other hand, Chudnovsky and Seymour (Combinatorica 2012) proved the conjecture in the special case of cubic planar graphs. In our work we consider random bridgeless cubic planar graphs with the uniform distribution on graphs with $n$ vertices. Under this model we show that the expected number of perfect matchings in labeled bridgeless cubic planar graphs is asymptotically $c\gamma^n$, where $c>0$ and $\gamma \sim 1.14196$ is an explicit algebraic number. We also compute the expected number of perfect matchings in (non necessarily bridgeless) cubic planar graphs and provide lower bounds for unlabeled graphs. Our starting point is a correspondence between counting perfect matchings in rooted cubic planar maps and the partition function of the Ising model in rooted triangulations.
翻译:1970年代Lov\'asz和Plummer的一个众所周知的预测来自Lov\'asz和Plummer 1970年代的一个众所周知的预测称,一个没有桥梁的立方图有成倍的完美匹配,由Esperet 等人(Adv. Math. 2011)解决。另一方面,Chudnovsky和Seymour(Combinatorica 2012)证明了立方平面图特殊案例中的假设。在我们的工作中,我们考虑的是无桥的立方图和带有美元悬浮的图形统一分布的没有桥梁的立方图。在这个模型下,我们显示在标注的无桥梁的立方平面图中,预期的完美匹配数是零美元和1.141996美元等值,这是明确的代数。我们还在(不一定没有桥梁的)立方平面图中计算了预期的完美匹配数,并为没有标签的图形提供了较低的界限。我们的出发点是,在根基的立方平面平面图和永久的立方图中计算出完美匹配数之间的对应点。