Over the last two decades, we have seen extensive industrial research in the area of computational advertising. In this paper, our goal is to study the performance of various online learning algorithms to identify and display the best ads/offers with the highest conversion rates to web users. We formulate our ad-selection problem as a Multi-Armed Bandit problem which is a classical paradigm in Machine Learning. We have been applying machine learning, data mining, probability, and statistics to analyze big data in the ad-tech space and devise efficient ad selection strategies. This article highlights some of our findings in the area of computational advertising from 2011 to 2015.
翻译:在过去二十年中,我们看到了计算广告领域广泛的工业研究,在本文中,我们的目标是研究各种在线学习算法的绩效,以识别和展示向网络用户转换率最高的最佳广告/出价。我们把我们的选择问题描述为多武装盗匪问题,这是机器学习的典型范例。我们一直在应用机器学习、数据挖掘、概率和统计数据来分析技术空间的大数据,并制定高效的广告选择战略。这篇文章突出介绍了我们在2011年至2015年计算广告领域的一些发现。