Phase Change Memory (PCM) is an attractive candidate for main memory as it offers non-volatility and zero leakage power, while providing higher cell densities, longer data retention time, and higher capacity scaling compared to DRAM. In PCM, data is stored in the crystalline or amorphous state of the phase change material. The typical electrically-controlled PCM (EPCM), however, suffers from longer write latency and higher write energy compared to DRAM and limited multi-level cell (MLC) capacities. These challenges limit the performance of data-intensive applications running on computing systems with EPCMs. Recently, researchers demonstrated optically-controlled PCM (OPCM) cells, with support for 5 bits/cell in contrast to 2 bits/cell in EPCM. These OPCM cells can be accessed directly with optical signals that are multiplexed in high-bandwidth-density silicon-photonic links. The higher MLC capacity in OPCM and the direct cell access using optical signals enable an increased read/write throughput and lower energy per access than EPCM. However, due to the direct cell access using optical signals, OPCM systems cannot be designed using conventional memory architecture. We need a complete redesign of the memory architecture that is tailored to the properties of OPCM technology. This paper presents the design of a unified network and main memory system called COSMOS that combines OPCM and silicon-photonic links to achieve high memory throughput. COSMOS is composed of a hierarchical multi-banked OPCM array with novel read and write access protocols, and uses an Electrical-Optical-Electrical (E-O-E) control unit to interface with the processor. Our evaluation of a 2.5D-integrated system containing a processor and COSMOS demonstrates 2.14x average speedup compared to an EPCM system. COSMOS consumes 3.8x lower read energy-per-bit and 5.97x lower write energy-per-bit compared to EPCM.
翻译:相较于DRAM(PCM), 阶段变革记忆(PCM) 是一个具有吸引力的主记忆候选体, 因为它提供非挥发和零渗漏能力, 而同时提供更高的细胞密度、 更长的数据保留时间和更高的能力缩放。 在 PCM 中, 数据储存在阶段变化材料的晶状状态或无变化状态中。 然而, 典型的电气控制的 PCM( PCM) 与 DRAM( PCM) 和有限的多级细胞( MLC) 相比, 具有较长的写写延和高写能量。 这些挑战限制了与 EPCMM( OPCM) 计算系统运行的数据密集应用性应用程序的性能。 最近, 研究人员展示了光学控制的 PCM( MO- O) 2 的光学界面, 与 EPCM( OPCM( OPCM) ) 的高级智能连接, 然而, 我们无法通过常规的内存( OPCM) 的内存( IM) 内部) 系统, 将一个常规内存的内存( ) 的内存( ) 系统连接系统连接到一个内存( ) ) 的内存( ) 的内存( ) ) 将一个内部存(O- ) ) 的内存( ) 的内存( ) ) ) 内部存( ) ) 的内存到一个内部存到一个内部存到一个内部存( ) 的内存到一个内部存到一个内部存到一个内部存到一个内部存到一个内部存到一个内部存到一个内部存到一个内部存到一个内部存到一个内部存( ) ) ) ) 系统, ) 系统, ) ) 系统的系统, 的内管) 系统, 系统, 的内存到一个内部存到一个内部存到一个内部存到一个内部存到一个内部存到一个内部存到一个内部存到一个内部存到一个内部存到一个内部存到一个内存到一个内部存到一个内部存到一个内部存到一个内存到一个内部存到一个内部存到一个内部存到一个内部存到一个内部存