Craniomaxillofacial reconstruction with patient-specific customized craniofacial implants (CCIs) is most commonly performed for large-sized skeletal defects. Because the exact size of skull resection may not be known prior to the surgery, in the single-stage cranioplasty, a large CCI is prefabricated and resized intraoperatively with a manual-cutting process provided by a surgeon. The manual resizing, however, may be inaccurate and significantly add to the operating time. This paper introduces a fast and non-contact approach for intraoperatively determining the exact contour of the skull resection and automatically resizing the implant to fit the resection area. Our approach includes four steps: First, a patient's defect information is acquired by a 3D scanner. Second, the scanned defect is aligned to the CCI by registering the scanned defect to the reconstructed CT model. Third, a cutting toolpath is generated from the contour of the scanned defect. Lastly, the large CCI is resized by a cutting robot to fit the resection area according to the given toolpath. To evaluate the resizing performance of our method, six different resection shapes were used in the cutting experiments. We compared the performance of our method to the performances of surgeon's manual resizing and an existing technique which collects the defect contour with an optical tracking system and projects the contour on the CCI to guide the manual modification. The results show that our proposed method improves the resizing accuracy by 56% compared to the surgeon's manual modification and 42% compared to the projection method.


翻译:由于在手术前,在单阶段的胸骨切片中,一个大型的胸骨切片的精确大小可能并不为人所知,因此大型的胸骨切片在手术前,在单阶段的胸骨切片中,一个大型的胸骨切片在手术中是预先制造的,并且用外科医生提供的人工切除过程在手术中进行了重新配置。然而,手册的重新缩放可能不准确,并大大增加了操作时间。本文件提出了一种快速和非接触的方法,用于在手术中确定头骨切片的准确轮廓,并自动调整胸口切片的准确性能以适应剖面区域。我们的方法包括四个步骤:首先,3D扫描器获得病人的缺陷信息。第二,扫描器的缺陷通过将扫描缺陷登记到经过改造的手动切片模型中,与CCI相匹配。第三,扫描器的轮廓是从扫描器的轮廓中生成的切片路径。最后,大型的 CCI由一个切片机器人重新缩到符合给定的剖面区域与给定的轮廓区域。我们使用的手动方法的变换方法比了我们目前使用的手动方法。我们使用的手动的手动方法的演图图图的缩方法,用来显示了我们的手动图图的缩方法。

0
下载
关闭预览

相关内容

专知会员服务
25+阅读 · 2021年4月2日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Jupyter Notebooks数据科学最佳实践指南
AI研习社
4+阅读 · 2019年3月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
美国化学会 (ACS) 北京代表处招聘
知社学术圈
11+阅读 · 2018年9月4日
IEEE2018|An Accurate and Real-time 3D Tracking System for Robots
视频超分辨 Detail-revealing Deep Video Super-resolution 论文笔记
统计学习与视觉计算组
17+阅读 · 2018年3月16日
已删除
科学网
59+阅读 · 2018年2月9日
推荐|深度强化学习聊天机器人(附论文)!
全球人工智能
4+阅读 · 2018年1月30日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
Arxiv
0+阅读 · 2021年5月4日
VIP会员
相关VIP内容
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Jupyter Notebooks数据科学最佳实践指南
AI研习社
4+阅读 · 2019年3月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
美国化学会 (ACS) 北京代表处招聘
知社学术圈
11+阅读 · 2018年9月4日
IEEE2018|An Accurate and Real-time 3D Tracking System for Robots
视频超分辨 Detail-revealing Deep Video Super-resolution 论文笔记
统计学习与视觉计算组
17+阅读 · 2018年3月16日
已删除
科学网
59+阅读 · 2018年2月9日
推荐|深度强化学习聊天机器人(附论文)!
全球人工智能
4+阅读 · 2018年1月30日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
Top
微信扫码咨询专知VIP会员