Pre-trained large language models (LLMs) have powerful capabilities for generating creative natural text. Evolutionary algorithms (EAs) can discover diverse solutions to complex real-world problems. Motivated by the common collective and directionality of text sequence generation and evolution, this paper illustrates the strong consistency of LLMs and EAs, which includes multiple one-to-one key characteristics: token embedding and genotype-phenotype mapping, position encoding and fitness shaping, position embedding and selection, attention and crossover, feed-forward neural network and mutation, model training and parameter update, and multi-task learning and multi-objective optimization. Based on this consistency perspective, existing coupling studies are analyzed, including evolutionary fine-tuning and LLM-enhanced EAs. Leveraging these insights, we outline a fundamental roadmap for future research in coupling LLMs and EAs, while highlighting key challenges along the way. The consistency not only reveals the evolution mechanism behind LLMs but also facilitates the development of evolved artificial agents that approach or surpass biological organisms.
翻译:暂无翻译