To bridge the ever increasing gap between deep neural networks' complexity and hardware capability, network quantization has attracted more and more research attention. The latest trend of mixed precision quantization takes advantage of hardware's multiple bit-width arithmetic operations to unleash the full potential of network quantization. However, this also results in a difficult integer programming formulation, and forces most existing approaches to use an extremely time-consuming search process even with various relaxations. Instead of solving a problem of the original integer programming, we propose to optimize a proxy metric, the concept of network orthogonality, which is highly correlated with the loss of the integer programming but also easy to optimize with linear programming. This approach reduces the search time and required data amount by orders of magnitude, with little compromise on quantization accuracy. Specifically, on post-training quantization, we achieve 71.27% Top-1 accuracy on MobileNetV2, which only takes 9 seconds for searching and 1.4 GPU hours for finetuning on ImageNet. Our codes are avaliable at https://github.com/MAC-AutoML/OMPQ.


翻译:为了弥合深神经网络复杂程度和硬件能力之间日益扩大的差距,网络量化吸引了越来越多的研究关注。最新的混合精确度化趋势利用硬件的多重位宽算算术操作来释放网络量化的全部潜力。然而,这也造成一个困难的整数编程,迫使大多数现有方法使用极其耗时的搜索程序,即使有各种节制,也不得不使用极其耗时的搜索程序。我们不解决原始整数编程的一个问题,而是建议优化一个代用指标,即网络或方位化概念,它与整数编程的丢失密切相关,但也容易与线性编程优化。这种方法减少了搜索时间,要求的数据数量按数量顺序排列,而在量化精度方面几乎没有妥协。具体地说,在培训后量化方面,我们在MiveNetV2上实现了71.27%的顶端-1精度,这只需要9秒钟的时间来搜索图像网并微调整1.4GPU小时。我们的代码可以在https://github.com/MACMAC-AutimutML/OMQ。

0
下载
关闭预览

相关内容

专知会员服务
45+阅读 · 2021年7月26日
最新《神经架构搜索NAS》教程,33页pdf
专知会员服务
26+阅读 · 2020年12月2日
【经典书】C语言傻瓜式入门(第二版),411页pdf
专知会员服务
51+阅读 · 2020年8月16日
专知会员服务
60+阅读 · 2020年3月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
移动端机器学习资源合集
专知
8+阅读 · 2019年4月21日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
神经网络学习率设置
机器学习研究会
4+阅读 · 2018年3月3日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年11月5日
Arxiv
6+阅读 · 2021年3月30日
HAQ: Hardware-Aware Automated Quantization
Arxiv
6+阅读 · 2018年11月21日
VIP会员
相关资讯
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
移动端机器学习资源合集
专知
8+阅读 · 2019年4月21日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
神经网络学习率设置
机器学习研究会
4+阅读 · 2018年3月3日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员