The covariance structure of multivariate functional data can be highly complex, especially if the multivariate dimension is large, making extension of statistical methods for standard multivariate data to the functional data setting quite challenging. For example, Gaussian graphical models have recently been extended to the setting of multivariate functional data by applying multivariate methods to the coefficients of truncated basis expansions. However, a key difficulty compared to multivariate data is that the covariance operator is compact, and thus not invertible. The methodology in this paper addresses the general problem of covariance modeling for multivariate functional data, and functional Gaussian graphical models in particular. As a first step, a new notion of separability for multivariate functional data is proposed, termed partial separability, leading to a novel Karhunen-Lo\`eve-type expansion for such data. Next, the partial separability structure is shown to be particularly useful in order to provide a well-defined Gaussian graphical model that can be identified with a sequence of finite-dimensional graphical models, each of fixed dimension. This motivates a simple and efficient estimation procedure through application of the joint graphical lasso. Empirical performance of the method for graphical model estimation is assessed through simulation and analysis of functional brain connectivity during a motor task.
翻译:多变量功能数据共变结构可能非常复杂,特别是如果多变量维度大,则多变量功能数据共变结构的结构可能非常复杂,使标准多变量数据的统计方法扩大到功能性数据设置相当具有挑战性。例如,高西亚图形模型最近通过对脱轨基础扩展系数应用多变量方法,扩大到多变量功能数据设置多变量功能性数据。然而,与多变量数据相比,一个关键的困难是共变量操作员是紧凑的,因此不可倒置。本文件中的方法解决了多变量功能数据以及功能性高斯图形模型共变模式的一般问题。作为第一步,提出了多变量功能性数据分离的新概念,称为部分分离,导致这类数据出现新的Karhunen-Lo ⁇ éve型扩展系数。 与多变量性数据相比,一个关键的困难是,部分分离结构特别有用,以便提供一个定义明确的高斯图形模型,特别是功能性高斯图形模型的共变化模型,每个固定维度的图形模型都是固定维度数据。这通过一个简单的业绩分析方法,通过模拟模型的图形化评估程序,在模拟中鼓励一种简单的业绩分析方法。