Standard Transformers suffer from a "Semantic Alignment Tax", a prohibitive optimization cost required to organize a chaotic initialization into a coherent geometric map via local gradient diffusion. We hypothesize that this reliance on diffusive learning creates "Catastrophic Rigidity", rendering models unable to adapt to novel concepts without destroying their pre-trained reasoning capabilities. To isolate this phenomenon, we introduce Iterative Semantic Map Refinement (ISMR), a diagnostic protocol revealing that alignment is a fixed geometric barrier that scaling cannot solve; a 20-layer model overcomes this barrier no faster than a 1-layer model. We introduce the Phase-Resonant Intelligent Spectral Model (PRISM). PRISM encodes semantic identity as resonant frequencies in the complex domain (C^d) and replaces quadratic self-attention with linearithmic O(N log N) Gated Harmonic Convolutions. We validate PRISM on the WMT14 translation task. While the Standard Transformer maintains a slight edge in general competence on static benchmarks (23.88 vs 21.40 BLEU), it fails the "Plasticity-Stability" stress test completely. When injected with novel concepts, the Transformer suffers Catastrophic Forgetting, degrading by -10.55 BLEU points while achieving only 60% acquisition. In contrast, PRISM demonstrates Lossless Plasticity, achieving 96% 5-shot acquisition with negligible degradation (-0.84 BLEU). These results suggest that harmonic representations effectively decouple memory from reasoning, offering a structural solution to the plasticity-stability dilemma in real-time knowledge adaptation.
翻译:标准Transformer模型遭受'语义对齐税'的困扰,这是一种通过局部梯度扩散将混沌初始化组织为连贯几何映射所需的过高优化代价。我们假设这种对扩散学习的依赖导致了'灾难性刚性',使得模型无法适应新概念而不破坏其预训练的推理能力。为分离这一现象,我们引入了迭代语义映射精炼(ISMR),一种诊断协议,揭示对齐是一个固定的几何障碍,无法通过缩放解决;20层模型克服此障碍的速度并不比1层模型更快。我们提出了相位共振智能谱模型(PRISM)。PRISM将语义身份编码为复数域(C^d)中的共振频率,并用线性对数O(N log N)门控谐波卷积取代二次自注意力机制。我们在WMT14翻译任务上验证了PRISM。虽然标准Transformer在静态基准测试中保持轻微的综合性能优势(23.88 vs 21.40 BLEU),但在'可塑性-稳定性'压力测试中完全失败。当注入新概念时,Transformer遭受灾难性遗忘,BLEU分数下降-10.55点,仅实现60%的概念获取率。相比之下,PRISM展现出无损可塑性,以可忽略的性能下降(-0.84 BLEU)实现96%的5样本概念获取率。这些结果表明谐波表征有效解耦了记忆与推理,为实时知识适应中的可塑性-稳定性困境提供了结构性解决方案。