In the search for more efficient and less environmentally harmful cooling technologies, the field of magnetocalorics is considered a promising alternative. To generate cooling spans, rotating permanent magnet assemblies are used to cyclically magnetize and demagnetize magnetocaloric materials, which change their temperature under the application of a magnetic field. In this work, an axial rotary permanent magnet assembly, aimed for commercialization, is computationally designed using topology and shape optimization. This is efficiently facilitated in an isogeometric analysis framework, where harmonic mortaring is applied to couple the rotating rotor-stator system of the multipatch model. Inner, outer and co-rotating assemblies are compared and optimized designs for different magnet masses are determined. These simulations are used to homogenize the magnetic flux density in the magnetocaloric material. The resulting torque is analyzed for different geometric parameters. Additionally, the influence of anisotropy in the active magnetic regenerators is studied in order to guide the magnetic flux. Different examples are analyzed and classified to find an optimal magnet assembly for magnetocaloric cooling.
翻译:在寻找效率更高、对环境危害较小的冷却技术时,磁学领域被认为是一个很有希望的替代方法。为了产生冷却区,使用旋转永久磁组件来周期性地磁化和去磁化磁化材料,在磁场的应用下,这种材料会改变它们的温度。在这项工作中,一个旨在商业化的轴旋转永久磁组件是用地形学和形状优化来计算设计的。在一个等分测量分析框架中,对多盘模型的旋转转转筒-吸附器系统同时应用了调理迫击炮,从而有效地促进了这种设计。对内、外和共旋转组件进行了比较,并确定了不同磁力质量的优化设计。这些模拟用于对磁力学材料的磁通量密度进行同化。所产生的电磁力组是按不同的几何参数进行分析的。此外,还在研究活性磁再生器中的异性激素的影响,以指导磁通量。对不同的例子进行了分析和分类,以便找到磁力学冷却的最佳磁力组。