This paper uses a new textual data index for predicting stock market data. The index is applied to a large set of news to evaluate the importance of one or more general economic-related keywords appearing in the text. The index assesses the importance of the economic-related keywords, based on their frequency of use and semantic network position. We apply it to the Italian press and construct indices to predict Italian stock and bond market returns and volatilities in a recent sample period, including the COVID-19 crisis. The evidence shows that the index captures the different phases of financial time series well. Moreover, results indicate strong evidence of predictability for bond market data, both returns and volatilities, short and long maturities, and stock market volatility.
翻译:本文件使用新的文本数据指数来预测股票市场数据。该指数用于大量新闻,评价文本中一个或多个与经济有关的通用关键词的重要性。该指数根据经济关键词的使用频率和语义网络位置评估经济关键词的重要性。我们将其应用于意大利新闻界,并构建指数来预测意大利最近的抽样期间的股票和债券市场回报率和波动性,包括COVID-19危机。证据表明该指数很好地记录了金融时间序列的不同阶段。此外,结果表明债券市场数据的可预测性,包括回报率和挥发性、短期和较长期限以及股票市场波动。