We present NeRFEditor, an efficient learning framework for 3D scene editing, which takes a video captured over 360{\deg} as input and outputs a high-quality, identity-preserving stylized 3D scene. Our method supports diverse types of editing such as guided by reference images, text prompts, and user interactions. We achieve this by encouraging a pre-trained StyleGAN model and a NeRF model to learn from each other mutually. Specifically, we use a NeRF model to generate numerous image-angle pairs to train an adjustor, which can adjust the StyleGAN latent code to generate high-fidelity stylized images for any given angle. To extrapolate editing to GAN out-of-domain views, we devise another module that is trained in a self-supervised learning manner. This module maps novel-view images to the hidden space of StyleGAN that allows StyleGAN to generate stylized images on novel views. These two modules together produce guided images in 360{\deg}views to finetune a NeRF to make stylization effects, where a stable fine-tuning strategy is proposed to achieve this. Experiments show that NeRFEditor outperforms prior work on benchmark and real-world scenes with better editability, fidelity, and identity preservation.


翻译:我们推出 NeRFEditor, 这是一个用于 3D 场景编辑的高效学习框架, 将一个超过 360 {deg} 的视频作为高质量的、 身份保存的三D 场景的输入和输出。 我们的方法支持各种类型的编辑, 如参考图像、 文本提示和用户互动。 我们通过鼓励一个经过预先训练的 StyGAN 模型和一个 NERF 模型来互相学习。 具体地说, 我们使用 NERF 模型来生成许多图像角配对来训练一个调制器, 该模型可以调整StyleGAN 潜伏代码, 以生成任何特定角度的高不洁图像。 要对 GAN 外观进行外观的外观编辑, 我们设计了另一个模块, 以自我监督的学习方式对它进行训练。 这个模块将新版GAN 的隐蔽空间中的新版图像进行映射, 让 StylegGAN 在新视图上生成恒定的图像。 这两个模块一起生成360 360 360_deg} 的导图像, 来调整 NERF 来生成高调化螺旋化效果效果效果效果效果效果效果效果效果效果,,, 将显示前的Slimim- greal- greal- greg- 将显示 将显示比 校正 校正 校正 校正 战略 将 将 将 校正 校正 校正 将 校正 校正 校正 校正 校正 校正 校略 。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
72+阅读 · 2022年6月28日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
专知会员服务
60+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
23+阅读 · 2022年2月4日
Arxiv
25+阅读 · 2022年1月3日
Arxiv
23+阅读 · 2021年3月4日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员