Supermassive black holes (SMBHs) are ubiquitously found at the centers of most galaxies. Measuring SMBH mass is important for understanding the origin and evolution of SMBHs. However, traditional methods require spectral data which is expensive to gather. To solve this problem, we present an algorithm that weighs SMBHs using quasar light time series, circumventing the need for expensive spectra. We train, validate, and test neural networks that directly learn from the Sloan Digital Sky Survey (SDSS) Stripe 82 data for a sample of $9,038$ spectroscopically confirmed quasars to map out the nonlinear encoding between black hole mass and multi-color optical light curves. We find a 1$\sigma$ scatter of 0.35 dex between the predicted mass and the fiducial virial mass based on SDSS single-epoch spectra. Our results have direct implications for efficient applications with future observations from the Vera Rubin Observatory.
翻译:在大多数星系的中心都到处发现超小型黑洞(SMBHs) 。 测量 SMBH 质量对于了解 SMBH 的起源和进化十分重要。 但是, 传统方法需要收集昂贵的光谱数据来解决这个问题。 为了解决这个问题, 我们提出了一个算法, 利用类星光时间序列来权衡SMBHs, 绕过对昂贵光谱的需要。 我们训练、 验证和测试直接从斯隆数字天空测量(SDSS) 中学习的82 项数据, 用于9 038美元光谱确认的类星样本, 用于绘制黑洞质量和多色光学光学光学曲线之间的非线性编码。 我们根据SDSS 单位光谱显示的预测质量和光学质量之间有0. 35德的分布值。 我们的结果对未来观测Vera Rubin 观测结果的高效应用产生了直接影响。