Using electrocardiograms as an example, we demonstrate the characteristic problems that arise when modeling one-dimensional signals containing inaccurate repeating pattern by means of standard convolutional networks. We show that these problems are systemic in nature. They are due to how convolutional networks work with composite objects, parts of which are not fixed rigidly, but have significant mobility. We also demonstrate some counterintuitive effects related to generalization in deep networks.


翻译:以心电图为例,我们通过标准革命网络示范含有不准确重复模式的单维信号时,展示出出现的特殊问题。我们证明这些问题是系统性的,是因复合物体的组合网络如何运作造成的,这些物体的部分不是固定的,而是具有很大的流动性。我们还展示了与深层网络的概括化有关的一些反直觉效应。

0
下载
关闭预览

相关内容

在数学(特别是功能分析)中,卷积是对两个函数(f和g)的数学运算,产生三个函数,表示第一个函数的形状如何被另一个函数修改。 卷积一词既指结果函数,又指计算结果的过程。 它定义为两个函数的乘积在一个函数反转和移位后的积分。 并针对所有shift值评估积分,从而生成卷积函数。
【IJCAJ 2020】多通道神经网络 Multi-Channel Graph Neural Networks
专知会员服务
25+阅读 · 2020年7月19日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
一文读懂图卷积GCN
计算机视觉life
21+阅读 · 2019年12月21日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【CNN】一文读懂卷积神经网络CNN
产业智能官
18+阅读 · 2018年1月2日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
已删除
将门创投
5+阅读 · 2017年10月20日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Pointer Graph Networks
Arxiv
7+阅读 · 2020年6月11日
Arxiv
35+阅读 · 2020年1月2日
Arxiv
12+阅读 · 2018年9月15日
Arxiv
3+阅读 · 2018年8月17日
VIP会员
相关资讯
一文读懂图卷积GCN
计算机视觉life
21+阅读 · 2019年12月21日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【CNN】一文读懂卷积神经网络CNN
产业智能官
18+阅读 · 2018年1月2日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
已删除
将门创投
5+阅读 · 2017年10月20日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Top
微信扫码咨询专知VIP会员