The challenge of imbalanced data is prominent in medical image classification. This challenge arises when there is a significant disparity in the number of images belonging to a particular class, such as the presence or absence of a specific disease, as compared to the number of images belonging to other classes. This issue is especially notable during pandemics, which may result in an even more significant imbalance in the dataset. Researchers have employed various approaches in recent years to detect COVID-19 infected individuals accurately and quickly, with artificial intelligence and machine learning algorithms at the forefront. However, the lack of sufficient and balanced data remains a significant obstacle to these methods. This study addresses the challenge by proposing a progressive generative adversarial network to generate synthetic data to supplement the real ones. The proposed method suggests a weighted approach to combine synthetic data with real ones before inputting it into a deep network classifier. A multi-objective meta-heuristic population-based optimization algorithm is employed to optimize the hyper-parameters of the classifier. The proposed model exhibits superior cross-validated metrics compared to existing methods when applied to a large and imbalanced chest X-ray image dataset of COVID-19. The proposed model achieves 95.5% and 98.5% accuracy for 4-class and 2-class imbalanced classification problems, respectively. The successful experimental outcomes demonstrate the effectiveness of the proposed model in classifying medical images using imbalanced data during pandemics.


翻译:医学图像分类中不平衡数据问题十分突出。当某一类别(如特定疾病的存在与否)的图像数量与其他类别图像数量存在显著差异时,便会产生这一挑战。这一问题在大流行期间尤为显著,可能导致数据集出现更为严重的不平衡。近年来,研究者已采用多种方法以实现对COVID-19感染者的准确快速检测,其中人工智能与机器学习算法处于前沿地位。然而,缺乏充足且平衡的数据仍是这些方法面临的主要障碍。本研究通过提出一种渐进式生成对抗网络来生成合成数据以补充真实数据,从而应对这一挑战。所提方法采用加权策略,在将数据输入深度网络分类器之前,将合成数据与真实数据进行融合。研究采用一种基于群体的多目标元启发式优化算法来优化分类器的超参数。当应用于大规模且不平衡的COVID-19胸部X射线图像数据集时,与现有方法相比,所提模型展现出更优的交叉验证指标。针对四类与二类不平衡分类问题,所提模型分别取得了95.5%与98.5%的准确率。成功的实验结果证明了该模型在大流行期间利用不平衡数据进行医学图像分类的有效性。

0
下载
关闭预览

相关内容

关于GANs在医学图像领域应用的总结
人工智能前沿讲习班
31+阅读 · 2019年6月4日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
Top
微信扫码咨询专知VIP会员