One of the innovations brought by Mirai and its derived malware is the adoption of self-contained loaders for infecting IoT devices and recruiting them in botnets. Functionally decoupled from other botnet components and not embedded in the payload, loaders cannot be analysed using conventional approaches that rely on honeypots for capturing samples. Different approaches are necessary for studying the loaders evolution and defining a genealogy. To address the insufficient knowledge about loaders' lineage in existing studies, in this paper, we propose a semantic-aware method to measure, categorize, and compare different loader servers, with the goal of highlighting their evolution, independent from the payload evolution. Leveraging behavior-based metrics, we cluster the discovered loaders and define eight families to determine the genealogy and draw a homology map. Our study shows that the source code of Mirai is evolving and spawning new botnets with new capabilities, both on the client side and the server side. In turn, shedding light on the infection loaders can help the cybersecurity community to improve detection and prevention tools.
翻译:Mirai及其衍生的恶意软件带来的创新之一是采用自成一体的装载器来感染IOT装置,并将这些装置运入薄网。功能上与其它肉网部件脱钩,而不是嵌入有效载荷,无法使用依靠蜂蜜罐采集样本的传统方法对装载器进行分析。研究装载器进化和定义基因学需要不同的方法。为了解决现有研究中对装载器线系认识不足的问题,本文件提出了测量、分类和比较不同装载器服务器的语义觉方法,目的是突出其演变,使其独立于有效载荷演变。利用基于行为的测量方法,我们将所发现的装载器集中起来,确定八个家庭,以确定基因学和绘制同系图。我们的研究显示,米拉伊的源代码正在演变,并产出具有新能力的新的机器人。反过来,在客户方和服务器方面,对感染负载器的光灯光可以帮助网络安全界改进检测和预防工具。