Uncalibrated photometric stereo (UPS) is challenging due to the inherent ambiguity brought by the unknown light. Although the ambiguity is alleviated on non-Lambertian objects, the problem is still difficult to solve for more general objects with complex shapes introducing irregular shadows and general materials with complex reflectance like anisotropic reflectance. To exploit cues from shadow and reflectance to solve UPS and improve performance on general materials, we propose DANI-Net, an inverse rendering framework with differentiable shadow handling and anisotropic reflectance modeling. Unlike most previous methods that use non-differentiable shadow maps and assume isotropic material, our network benefits from cues of shadow and anisotropic reflectance through two differentiable paths. Experiments on multiple real-world datasets demonstrate our superior and robust performance.
翻译:未校准的光度测量 (UPS) 是具有挑战性的问题,因为未知的光线引入了固有的歧义性。尽管在非兰伯特物体上减轻了歧义,但对于引入不规则阴影和引入各向异性反射等复杂材料的更一般的形状的物体,该问题仍然难以解决。为了利用阴影和反射的线索来解决未校准的光度测量并提高在一般材料上的性能,我们提出了DANI-Net,一种带有可微分阴影处理和各向异性反射建模的反演渲染框架。与大多数先前使用不可微分阴影图并假设等向材料的方法不同,我们的网络通过两个可微分的路径从阴影和各向异性反射的线索中获益。对多个真实世界数据集上的实验证明了我们卓越且稳健的性能。