We study a natural application of contract design to search problems with probabilistic prior and exploration costs. These problems have a plethora of applications and are expressed concisely within the Pandora's Box model. Its optimal solution is the ingenious index policy proposed originally by Weitzman in 1979. In our principal-agent setting, the search task is delegated to an agent. The agent performs a sequential exploration of $n$ boxes, suffers the exploration cost for each inspected box, and selects the content (called the prize) of one inspected box as outcome. Agent and principal obtain an individual value based on the selected prize. To influence the search, the principal a-priori designs a contract with a non-negative payment to the agent for each potential prize. The goal of the principal to maximize her expected reward, i.e., value minus payment. We show how to compute optimal contracts for the principal in several scenarios. A popular and important subclass are linear contracts, and we show how to compute optimal linear contracts in polynomial time. For general contracts, we consider the standard assumption that the agent suffers cost but obtains value only from the transfers by the principal. Interestingly, a suitable adaptation of the index policy results in an optimal contract here. More generally, for general contracts with non-zero agent values for outcomes we show how to compute an optimal contract in two cases: (1) when each box has only one prize with non-zero value for principal and agent, (2) for i.i.d. boxes with a single prize with positive value for the principal. These results show that optimal contracts can be highly non-trivial, and their design goes significantly beyond the application or re-interpretation of the index policy.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
37+阅读 · 2021年8月2日
Deep Anomaly Detection with Outlier Exposure
Arxiv
17+阅读 · 2018年12月21日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员