Monadic second order logic is the expansion of first order logic by quantifiers ranging over unary relations. We study the shared monadic second order theory of finite linear orders, i.e. the pseudofinite monadic second order theory of linear order, using a first order setup . We give explicit (and recursive) axioms and characterise the completions in terms of residue sequences. A connection with profinite algebra, in particular with the free profinite monoid on one generator, is established via extended Stone duality.
翻译:修道院第二顺序逻辑是一阶逻辑的扩展,由各种修饰符扩展至一阶关系。我们研究了共同的修道院第二阶理论,即有限的线性定序,即假造的修补线性定序第二阶理论。我们给出了明确的(和再现的)轴,并用残余序列来描述完成过程的特征。我们通过扩展的石器双元,建立了与纯定代数的联系,特别是与一个生成器上自由的纯度单数的联系。