Applications of intelligent reflecting surfaces (IRSs) in wireless networks have attracted significant attention recently. Most of the relevant literature is focused on the single cell setting where a single IRS is deployed, while static and perfect channel state information (CSI) is assumed. In this work, we develop a novel methodology for multi-IRS-assisted multi-cell networks in the uplink. We formulate the sum-rate maximization problem aiming to jointly optimize the IRS reflect beamformers, base station (BS) combiners, and user equipment (UE) transmit powers. In this optimization, we consider the scenario in which (i) channels are dynamic and (ii) only partial CSI is available at each BS; specifically, scalar effective channels of local UEs and some of the interfering UEs. In casting this as a sequential decision making problem, we propose a multi-agent deep reinforcement learning algorithm to solve it, where each BS acts as an independent agent in charge of tuning the local UEs transmit powers, the local IRS reflect beamformer, and its combiners. We introduce an efficient message passing scheme that requires limited information exchange among the neighboring BSs to cope with the non-stationarity caused by the coupling of actions taken by multiple BSs. Our numerical simulations show that our method obtains substantial improvement in average data rate compared to several baseline approaches, e.g., fixed UEs transmit power and maximum ratio combining.
翻译:在无线网络中,智能反射表面(IRS)的应用最近引起极大关注。大多数相关文献侧重于单一IRS部署的单细胞设置,同时假定了静态和完美的频道状态信息(CSI)。在这项工作中,我们为上行链中多IRS辅助多细胞网络开发了新方法。我们提出了总和最大化问题,目的是共同优化IRS反射光源、基地站组合器和用户设备传输权力。在这种优化中,我们考虑了以下两种情况:(一) 频道是动态的,(二) 在每个BS中只有部分 CSI;具体地说,当地UE和一些干扰UE的升级有效渠道。在将这一问题作为一个顺序决策问题提出时,我们提出了一种多媒介深度强化学习算法,使每个BS公司作为独立代理机构,负责调整当地UES传输权力、地方IRS反映信号和组合。我们采用了一种高效的传递信息高效传递方式,即要求当地电子传递信息的有效渠道和部分 CSI;具体地说,当地UE和某些干扰UE的干扰UE。我们通过模拟模型的虚拟化方法,使BS的多数数据升级方法与BS系统进行虚拟化的虚拟化。我们通过不进行大量的虚拟化的虚拟化的虚拟化的虚拟化的虚拟化。