Despite their popularity, to date, the application of normalizing flows on categorical data stays limited. The current practice of using dequantization to map discrete data to a continuous space is inapplicable as categorical data has no intrinsic order. Instead, categorical data have complex and latent relations that must be inferred, like the synonymy between words. In this paper, we investigate \emph{Categorical Normalizing Flows}, that is normalizing flows for categorical data. By casting the encoding of categorical data in continuous space as a variational inference problem, we jointly optimize the continuous representation and the model likelihood. Using a factorized decoder, we introduce an inductive bias to model any interactions in the normalizing flow. As a consequence, we do not only simplify the optimization compared to having a joint decoder, but also make it possible to scale up to a large number of categories that is currently impossible with discrete normalizing flows. Based on Categorical Normalizing Flows, we propose GraphCNF a permutation-invariant generative model on graphs. GraphCNF implements a three step approach modeling the nodes, edges and adjacency matrix stepwise to increase efficiency. On molecule generation, GraphCNF outperforms both one-shot and autoregressive flow-based state-of-the-art.


翻译:使用分解法绘制离散数据到连续空间的当前做法是不适用的,因为绝对数据没有内在的顺序。相反,绝对数据具有复杂和潜在的关系,必须加以推断,例如词际的同义词。在本文中,我们调查正使绝对数据流正常化的\ emph{Categorizalizalization curransions},这是目前离散正常化流所不可能的一大批类别。根据基于分类法的正常化流,我们建议GIGCNF在图表上采用一个变异式的CN变异模型。使用一个分解法解码器,我们引入一种向导偏向偏向性偏移,以模拟正常化流中的任何相互作用。因此,我们不仅简化了优化与联合解码器相比,而且还有可能将目前离异的正常流扩大到大量类别。我们建议GIAPCNF在连续空间中将绝对数据编码成一个变异式的遗传模型。在图形上,使用一个分解式解式解式解式解析法的模型,用一个步骤执行一个分步法式的模型,而双向式的模型。

1
下载
关闭预览

相关内容

让 iOS 8 和 OS X Yosemite 无缝切换的一个新特性。 > Apple products have always been designed to work together beautifully. But now they may really surprise you. With iOS 8 and OS X Yosemite, you’ll be able to do more wonderful things than ever before.

Source: Apple - iOS 8
专知会员服务
74+阅读 · 2020年9月1日
【KDD2020教程】多模态网络表示学习
专知会员服务
129+阅读 · 2020年8月26日
一份简单《图神经网络》教程,28页ppt
专知会员服务
123+阅读 · 2020年8月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
已删除
将门创投
6+阅读 · 2019年9月3日
ICML2019:Google和Facebook在推进哪些方向?
中国人工智能学会
5+阅读 · 2019年6月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
论文浅尝 | 一种嵌入效率极高的 node embedding 方式
开放知识图谱
13+阅读 · 2019年5月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Arxiv
0+阅读 · 2021年3月17日
Arxiv
9+阅读 · 2020年10月29日
Pointer Graph Networks
Arxiv
7+阅读 · 2020年6月11日
Arxiv
5+阅读 · 2019年6月5日
Arxiv
4+阅读 · 2019年1月14日
VIP会员
相关VIP内容
专知会员服务
74+阅读 · 2020年9月1日
【KDD2020教程】多模态网络表示学习
专知会员服务
129+阅读 · 2020年8月26日
一份简单《图神经网络》教程,28页ppt
专知会员服务
123+阅读 · 2020年8月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
相关资讯
已删除
将门创投
6+阅读 · 2019年9月3日
ICML2019:Google和Facebook在推进哪些方向?
中国人工智能学会
5+阅读 · 2019年6月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
论文浅尝 | 一种嵌入效率极高的 node embedding 方式
开放知识图谱
13+阅读 · 2019年5月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Top
微信扫码咨询专知VIP会员