In this paper, we introduce the class of $(\beta,\gamma)$-Chebyshev functions and corresponding points, which can be seen as a family of {\it generalized} Chebyshev polynomials and points. For the $(\beta,\gamma)$-Chebyshev functions, we prove that they are orthogonal in certain subintervals of $[-1,1]$ with respect to a weighted arc-cosine measure. In particular we investigate the cases where they become polynomials, deriving new results concerning classical Chebyshev polynomials of first kind. Besides, we show that subsets of Chebyshev and Chebyshev-Lobatto points are instances of $(\beta,\gamma)$-Chebyshev points. We also study the behavior of the Lebesgue constants of the polynomial interpolant at these points on varying the parameters $\beta$ and $\gamma$.
翻译:在本文中, 我们引入了 $ (\ beta,\ gamma) $- Chebyshev 的功能和相应的点, 这些功能和点可以被视为 Chebyshev 多元和点组成的家族。 对于 $ (\ beta,\ gamma) $- Chebyshev 的功能, 我们证明这些功能在某些次间值 $( $-1, 1美元 ) 中与加权弧- cosine 测量值是正方位的 。 特别是, 我们调查了这些功能成为多元性的情况, 并得出了第一种典型的Chebyshev 多元和点的新结果 。 此外, 我们展示了 Chebyshev 和 Chebyshev- Lobatto 的子点是 $ (\ beta,\ gamma) $- Chebyshev 值的例子。 我们还研究了这些点上多分子间常数的莱贝斯格 行为, 其参数是 $\ beta 和 $\\ gama$ 。