We show the first near-linear time randomized algorithms for listing all minimum vertex cuts of polylogarithmic size that separate the graph into at least three connected components (also known as shredders) and for finding the most shattering one, i.e., the one maximizing the number of connected components. Our algorithms break the quadratic time bound by Cheriyan and Thurimella (STOC'96) for both problems that has been unimproved for more than two decades. Our work also removes an impor- tant bottleneck to near-linear time algorithms for the vertex connectivity augmentation problem (Jordan '95) and finding an even-length cycle in a directed graph, a problem shown to be equivalent to many other fundamental problems (Vazirani and Yannakakis '90, Robertson et al. '99). Note that it is necessary to list only minimum vertex cuts that separate the graph into at least three components because there can be an exponential number of minimum vertex cuts in general. To obtain near-linear time algorithms, we have extended techniques in local flow algorithms developed by Forster et al. (SODA'20) to list shredders on a local scale. We also exploit fast queries to a pairwise vertex connectivity oracle subject to vertex failures (Long and Saranurak FOCS'22, Kosinas ESA'23). This is the first application of connectivity oracles subject to vertex failures to speed up a static graph algorithm.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
21+阅读 · 2023年7月12日
Anomalous Instance Detection in Deep Learning: A Survey
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员