We introduce a hybrid "Modified Genetic Algorithm-Multilevel Stochastic Gradient Descent" (MGA-MSGD) training algorithm that considerably improves accuracy and efficiency of solving 3D mechanical problems described, in strong-form, by PDEs via ANNs (Artificial Neural Networks). This presented approach allows the selection of a number of locations of interest at which the state variables are expected to fulfil the governing equations associated with a physical problem. Unlike classical PDE approximation methods such as finite differences or the finite element method, there is no need to establish and reconstruct the physical field quantity throughout the computational domain in order to predict the mechanical response at specific locations of interest. The basic idea of MGA-MSGD is the manipulation of the learnable parameters' components responsible for the error explosion so that we can train the network with relatively larger learning rates which avoids trapping in local minima. The proposed training approach is less sensitive to the learning rate value, training points density and distribution, and the random initial parameters. The distance function to minimise is where we introduce the PDEs including any physical laws and conditions (so-called, Physics Informed ANN). The Genetic algorithm is modified to be suitable for this type of ANN in which a Coarse-level Stochastic Gradient Descent (CSGD) is exploited to make the decision of the offspring qualification. Employing the presented approach, a considerable improvement in both accuracy and efficiency, compared with standard training algorithms such as classical SGD and Adam optimiser, is observed. The local displacement accuracy is studied and ensured by introducing the results of Finite Element Method (FEM) at sufficiently fine mesh as the reference displacements. A slightly more complex problem is solved ensuring its feasibility.


翻译:我们引入了一个混合的“变异基因变异变异感-多层次 Stoticast Sockastic Gradient Emplement ” (MGA-MSGD) 培训算法(MGA-MSGD), 该算法大大提高了通过 ANN( 人工神经网络) 解决三维机械问题的精确度和效率。 这个提出的方法允许选择一些感兴趣的地点, 期望州变量在其中满足与物理问题相关的治理方程。 不同于传统的 PDE 近似方法, 如有限差异或定值元素精度方法, 不需要在整个计算域内建立并重建物理场数量, 以预测特定感兴趣地点的机械反应。 MGAGA-MSGD的基本想法是操纵错误爆炸的可学习参数组成部分, 这样我们就可以用相对较高的学习率来培训网络, 避免本地迷你现象。 拟议的培训方法对学习率值、 培训点密度和分布以及随机初始参数不太敏感。 距离功能是最小化我们引入PDE 的参考, 包括任何相对精确的精确度, 将精度的精度和直观的精度的精度 。 将S- halalalalalalalalal dealalalalalalal 的精度 的精度提高到的精度转化为的精度转化为的精度转化为的精度转化为的精度, 。

0
下载
关闭预览

相关内容

机器学习系统设计系统评估标准
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
49+阅读 · 2021年1月20日
专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
【2020新书】C++20 特性 第二版,A Problem-Solution Approach
专知会员服务
58+阅读 · 2020年4月26日
专知会员服务
161+阅读 · 2020年1月16日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
如何改进梯度下降算法
论智
9+阅读 · 2018年4月19日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】(Keras)LSTM多元时序预测教程
机器学习研究会
24+阅读 · 2017年8月14日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
VIP会员
相关资讯
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
如何改进梯度下降算法
论智
9+阅读 · 2018年4月19日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】(Keras)LSTM多元时序预测教程
机器学习研究会
24+阅读 · 2017年8月14日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员