This paper presents a new semantic method for proving lower bounds in computational complexity. We use it to prove that $\mathbf{maxflow}$, a $\mathbf{Ptime}$-complete problem, is not computable in polylogarithmic time on parallel random access machines (PRAMs) working with integers, showing that $\mathbf{NC}_{\mathbb{Z}}\neq\mathbf{Ptime}$, where $\mathbf{NC}_{\mathbb{Z}}$ is the complexity class defined by such machines, and $\mathbf{Ptime}$ is the standard class of polynomial time computable problems (on, say, a Turing machine). On top of showing this new separation result, we show our method captures previous lower bounds results from the literature: Steele and Yao's lower bounds for algebraic decision trees, Ben-Or's lower bounds for algebraic computation trees, Cucker's proof that $\mathbf{NC}_{\mathbb{R}}$ is not equal to $\mathbf{Ptime}_{\mathbb{R}}$, and Mulmuley's lower bounds for "PRAMs without bit operations".
翻译:本文展示了一种新的语义方法来证明计算复杂度中的下限。 我们用它来证明 $\ mathbf{maxftraxf}$\ mathbf{Ptime}$- 完整的问题, 在平行随机访问机( PRAMS) 的多元随机访问机( PRAMS) 使用整数计算时无法计算 。 显示 $\ mathbf{ NC\mathb}\ neq\ mathbf{Ptime} $, 其中$\ mathf{ mathb} 是这类机器定义的复杂等级, $\ mathfff{Ptime} 美元是多元时间折数问题的标准类别( 例如, 图形机器 ) 。 在显示新的分隔结果时, 我们展示了我们的方法可以捕捉到文献中以前的下界结果 : Steeele 和 Yao 用于等数决定树的下界, 用于平面计算树的下界, Ben- Or's 下界, 证明 $math\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\