Linear layouts are a graph visualization method that can be used to capture an entry pattern in an adjacency matrix of a given graph. By reordering the node indices of the original adjacency matrix, linear layouts provide knowledge of latent graph structures. Conventional linear layout methods commonly aim to find an optimal reordering solution based on predefined features of a given matrix and loss function. However, prior knowledge of the appropriate features to use or structural patterns in a given adjacency matrix is not always available. In such a case, performing the reordering based on data-driven feature extraction without assuming a specific structure in an adjacency matrix is preferable. Recently, a neural-network-based matrix reordering method called DeepTMR has been proposed to perform this function. However, it is limited to a two-mode reordering (i.e., the rows and columns are reordered separately) and it cannot be applied in the one-mode setting (i.e., the same node order is used for reordering both rows and columns), owing to the characteristics of its model architecture. In this study, we extend DeepTMR and propose a new one-mode linear layout method referred to as AutoLL. We developed two types of neural network models, AutoLL-D and AutoLL-U, for reordering directed and undirected networks, respectively. To perform one-mode reordering, these AutoLL models have specific encoder architectures, which extract node features from an observed adjacency matrix. We conducted both qualitative and quantitative evaluations of the proposed approach, and the experimental results demonstrate its effectiveness.


翻译:线性布局是一种图形直观方法,可用于在特定图形的相邻矩阵中捕捉输入模式。通过重新排序原始相邻矩阵的节点指数,线性布局可以提供潜在图形结构的知识。常规线性布局方法通常旨在根据特定矩阵和损失函数的预定义特征找到最佳的重新排序解决方案。然而,对于某个相邻矩阵中使用的适当特征或结构模式的先前知识并不总是可用。在这种情况下,根据数据驱动特征提取进行重新排序,而不必假设对相邻矩阵中的特定结构进行重新排序是可取的。最近,一种基于神经网络的基线性矩阵重新排序方法(称为深TMRMR)已经提出来履行这一功能。然而,它仅限于基于特定矩阵和损失函数的两部模式重新排序(即行和列分别重新排序),无法在单部设置中应用同样的节点(i.e.),在对以数据驱动特性提取的行和列进行重新排序时使用相同的节点顺序,由于两个模式的模型的特性,我们分别对一个模型和两个方向性模型进行一个方向性模型的模型和一个方向性模型的模型的模型进行了测试。

0
下载
关闭预览

相关内容

专知会员服务
28+阅读 · 2021年8月2日
【图与几何深度学习】Graph and geometric deep learning,49页ppt
已删除
将门创投
6+阅读 · 2019年6月10日
Arxiv
7+阅读 · 2019年6月20日
Position-aware Graph Neural Networks
Arxiv
15+阅读 · 2019年6月11日
Arxiv
23+阅读 · 2018年10月24日
Arxiv
7+阅读 · 2018年8月21日
Arxiv
6+阅读 · 2018年2月24日
VIP会员
相关VIP内容
专知会员服务
28+阅读 · 2021年8月2日
【图与几何深度学习】Graph and geometric deep learning,49页ppt
相关资讯
已删除
将门创投
6+阅读 · 2019年6月10日
相关论文
Top
微信扫码咨询专知VIP会员