Machine learning models are known to be susceptible to adversarial perturbation. One famous attack is the adversarial patch, a sticker with a particularly crafted pattern that makes the model incorrectly predict the object it is placed on. This attack presents a critical threat to cyber-physical systems that rely on cameras such as autonomous cars. Despite the significance of the problem, conducting research in this setting has been difficult; evaluating attacks and defenses in the real world is exceptionally costly while synthetic data are unrealistic. In this work, we propose the REAP (REalistic Adversarial Patch) benchmark, a digital benchmark that allows the user to evaluate patch attacks on real images, and under real-world conditions. Built on top of the Mapillary Vistas dataset, our benchmark contains over 14,000 traffic signs. Each sign is augmented with a pair of geometric and lighting transformations, which can be used to apply a digitally generated patch realistically onto the sign. Using our benchmark, we perform the first large-scale assessments of adversarial patch attacks under realistic conditions. Our experiments suggest that adversarial patch attacks may present a smaller threat than previously believed and that the success rate of an attack on simpler digital simulations is not predictive of its actual effectiveness in practice. We release our benchmark publicly at https://github.com/wagner-group/reap-benchmark.
翻译:已知机器学习模型很容易受到对抗性扰动。 已知一个著名的攻击是对抗性攻击, 是一个特别设计模式的标签, 使模型错误地预测了它所放置的物体。 这次攻击对依赖自动汽车等相机的网络物理系统构成重大威胁。 尽管问题很严重, 在这种环境下进行研究是困难的; 评估现实世界中的攻击和防御费用非常昂贵, 而合成数据是不现实的。 在这项工作中, 我们提议了REAP( Realistic Aversarial Patch) 基准, 一个数字基准, 使用户能够评估真实图像上的补丁攻击和现实世界条件下的贴补丁。 在Maply Vistas数据集的顶部, 我们的基准包含14 000多个交通信号。 每条信号都配有几何和照明转换,可以用数字生成的补丁现实的补丁。 我们使用我们的基准, 在现实条件下, 对对抗性补丁攻击进行第一次大规模评估。 我们的实验表明, 对抗性补丁攻击可能带来比以前相信的更小的威胁, 在现实世界条件下, 我们的基/ 试验显示我们攻击的成功率 。