In this paper, we have worked on interpretability, trust, and understanding of the decisions made by models in the form of classification tasks. The task is divided into 3 subtasks. The first task consists of determining Binary Sexism Detection. The second task describes the Category of Sexism. The third task describes a more Fine-grained Category of Sexism. Our work explores solving these tasks as a classification problem by fine-tuning transformer-based architecture. We have performed several experiments with our architecture, including combining multiple transformers, using domain adaptive pretraining on the unlabelled dataset provided by Reddit and Gab, Joint learning, and taking different layers of transformers as input to a classification head. Our system (with team name Attention) was able to achieve a macro F1 score of 0.839 for task A, 0.5835 macro F1 score for task B and 0.3356 macro F1 score for task C at the Codalab SemEval Competition. Later we improved the accuracy of Task B to 0.6228 and Task C to 0.3693 in the test set.


翻译:在本文中,我们研究了模型的分类任务中对决策的可解释性、可信度和理解性。该任务分为3个子任务。第一个任务是确定二元性别歧视检测。第二个任务描述了性别歧视的类别。第三个任务描述了更细致的性别歧视类别。我们的工作探索将这些任务作为分类问题通过微调基于transformer的架构来解决。我们对我们的体系结构进行了多次实验,包括组合多个transformer,使用Reddit和Gab提供的未标记数据集上的领域自适应预训练,联合学习以及将transformer的不同层作为分类头的输入。我们的系统(团队名Attention)在 Codalab SemEval比赛中为任务A达到了0.839的宏F1得分,任务B的宏F1得分为0.5835,任务C的宏F1得分为0.3356。后来我们在测试集中将任务B的准确度提高到了0.6228,任务C的准确度提高到了0.3693。

0
下载
关闭预览

相关内容

【CMU博士论文】开放世界目标检测与跟踪,168页pdf
专知会员服务
58+阅读 · 2021年6月14日
专知会员服务
123+阅读 · 2020年9月8日
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
【数据集】新的YELP数据集官方下载
机器学习研究会
16+阅读 · 2017年8月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
5+阅读 · 2014年12月31日
国家自然科学基金
7+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
28+阅读 · 2022年3月28日
Arxiv
31+阅读 · 2021年3月29日
Arxiv
21+阅读 · 2020年10月11日
Arxiv
11+阅读 · 2019年4月15日
Arxiv
19+阅读 · 2018年10月25日
VIP会员
相关资讯
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
【数据集】新的YELP数据集官方下载
机器学习研究会
16+阅读 · 2017年8月31日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
5+阅读 · 2014年12月31日
国家自然科学基金
7+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员