Given a set $S$ of $n$ points, a weight function $w$ to associate a non-negative weight to each point in $S$, a positive integer $k \ge 1$, and a real number $\epsilon > 0$, we devise the following algorithms to compute a $k$-vertex fault-tolerant spanner network $G(S, E)$ for the metric space induced by the weighted points in $S$: (1) When the points in $S$ are located in a simple polygon, we present an algorithm to compute $G$ with multiplicative stretch $\sqrt{10}+\epsilon$, and the number of edges in $G$ (size of $G$) is $O(k n (\lg{n})^2)$. (2) When the points in $S$ are located in the free space of a polygonal domain $\cal P$ with $h$ number of obstacles, we present an algorithm to compute $G$ with multiplicative stretch $6+\epsilon$ and size $O(\sqrt{h} k n(\lg{n})^2)$. (3) When the points in $S$ are located on a polyhedral terrain, we devise an algorithm to compute $G$ with multiplicative stretch $6+\epsilon$ and size $O(k n (\lg{n})^2)$.
翻译:鉴于设定的美元美元点数,一个重量函数w$,将非负加权值与每点以美元计的美元、正整整美元=GG 1美元和实值美元 > 0美元挂钩,我们设计了以下算法,用以计算由加权点以美元计的美元(S,E)的宽度空间: (1) 当以美元计的点点位于一个简单的多边形时,我们提出一种算法,用倍数伸缩$=S$计算G美元,正整整整美元=G美元=G美元,而以美元计的边缘数(G美元)为$(kn(g{n})+美元)。 (2) 当以美元计的点位于多边域的自由空间,以美元计价,以美元计的障碍数目计,我们提出一种算法,用多倍增利值n=Q美元计算G美元,以美元计的边缘值数(G美元)为$(G_Q_Q_美元),而以美元计的平面值为美元。