In this paper, we propose a Similarity-Quality-based Messenger Distillation (SQMD) framework for heterogeneous asynchronous on-device healthcare analytics. By introducing a preloaded reference dataset, SQMD enables all participant devices to distill knowledge from peers via messengers (i.e., the soft labels of the reference dataset generated by clients) without assuming the same model architecture. Furthermore, the messengers also carry important auxiliary information to calculate the similarity between clients and evaluate the quality of each client model, based on which the central server creates and maintains a dynamic collaboration graph (communication graph) to improve the personalization and reliability of SQMD under asynchronous conditions. Extensive experiments on three real-life datasets show that SQMD achieves superior performance.
翻译:在本文中,我们建议为各种非同步的在设备上进行的医疗分析建立一个基于质量的类似信使蒸馏(SQMD)框架。通过引入预先加载的参考数据集,SQMD使所有参与者都能够通过同侪通过信使(即客户产生的参考数据集的软标签)提炼知识,而不必假设同样的模型结构。此外,信使还携带重要的辅助信息,用以计算客户之间的相似性,并评估每个客户模式的质量,中央服务器以此为基础创建并维持一个动态协作图表(通信图),以便在无同步条件下改进SQMD的个人化和可靠性。关于三个真实数据集的大规模实验显示,SQMD取得了优异性。