In this paper, we study the Tikhonov regularization scheme in Hilbert scales for the nonlinear statistical inverse problem with a general noise. The regularizing norm in this scheme is stronger than the norm in Hilbert space. We focus on developing a theoretical analysis for this scheme based on the conditional stability estimates. We utilize the concept of the distance function to establish the high probability estimates of the direct and reconstruction error in Reproducing kernel Hilbert space setting. Further, the explicit rates of convergence in terms of sample size are established for the oversmoothing case and the regular case over the regularity class defined through appropriate source condition. Our results improve and generalize previous results obtained in related settings.
翻译:在本文中,我们研究了Hilbert规模的非线性统计反比一般噪音问题中的Tikhonov正规化办法。这个办法的正规化规范比Hilbert空间的常规化规范更强。我们注重根据有条件的稳定估计值为这个办法进行理论分析。我们利用远程功能的概念来确定复制内核Hilbert空间设置中直接和重建错误的高概率估计值。此外,为过度偏移案件和通过适当来源条件确定的正常等级常规案件确定了样本大小方面的明显趋同率。我们的成果改进并概括了在相关环境中取得的以往结果。