We characterize those strings whose suffix arrays are based on arithmetic progressions, in particular, arithmetically progressed permutations where all pairs of successive entries of the permutation have the same difference modulo the respective string length. We show that an arithmetically progressed permutation $P$ coincides with the suffix array of a unary, binary, or ternary string. We further analyze the conditions of a given $P$ under which we can find a uniquely defined string over either a binary or ternary alphabet having $P$ as its suffix array. For the binary case, we show its connection to lower Christoffel words, balanced words, and Fibonacci words. In addition to solving the arithmetically progressed suffix array problem, we give the shape of the Burrows-Wheeler transform of those strings solving this problem. These results give rise to numerous future research directions.
翻译:我们根据算术进度来定义后缀阵列的字符串, 特别是, 算术进化式变异, 所有连续条目的对数都有相同的差数, 不同的字符串长度。 我们显示一个算术进化的变异 $P$ 与一个单词、 二进制或交替字符串的后缀阵列相吻合。 我们进一步分析一个给定的 $P 的条件, 在这个条件下, 我们可以找到一个独特的定义字符串, 在一个二进制或长期字母的双进制字符串上, 其后缀数为$P。 在二进制情况下, 我们显示它与降低 Christoffel 单词、 平衡单词和 Fibonacci 单词的关联。 除了解决算术进化后缀阵列问题之外, 我们还给这些字符串的布罗斯- Wheler 转换形状来解决这个问题。 这些结果引出许多未来研究方向 。