Finely tuning MPI applications and understanding the influence of keyparameters (number of processes, granularity, collective operationalgorithms, virtual topology, and process placement) is critical toobtain good performance on supercomputers. With the high consumptionof running applications at scale, doing so solely to optimize theirperformance is particularly costly. Havinginexpensive but faithful predictions of expected performance could bea great help for researchers and system administrators. Themethodology we propose decouples the complexity of the platform, whichis captured through statistical models of the performance of its maincomponents (MPI communications, BLAS operations), from the complexityof adaptive applications by emulating the application and skippingregular non-MPI parts of the code. We demonstrate the capability of our method with High-PerformanceLinpack (HPL), the benchmark used to rank supercomputers in theTOP500, which requires careful tuning. We briefly present (1) how theopen-source version of HPL can be slightly modified to allow a fastemulation on a single commodity server at the scale of asupercomputer. Then we present (2) an extensive (in)validation studythat compares simulation with real experiments and demonstrates our ability to predict theperformance of HPL within a few percent consistently. This study allows us toidentify the main modeling pitfalls (e.g., spatial and temporal nodevariability or network heterogeneity and irregular behavior) that needto be considered. Last, we show (3) how our "surrogate" allowsstudying several subtle HPL parameter optimization problems whileaccounting for uncertainty on the platform.


翻译:精细调整 MPI 应用程序并理解关键参数( 过程数量、 颗粒性、 集体操作操作系统、 虚拟地形和进程布局) 的影响,对于在超级计算机上取得良好性能至关重要。 随着运行应用程序在规模上消耗量高, 仅用于优化其性能的成本特别高。 将预期性能进行不昂贵但忠实的预测, 可能对研究人员和系统管理员大有帮助。 主题学我们提议解析平台的复杂性, 平台通过主要部件( MPI 通信、 BLAS 操作) 的性能统计模型, 从适应性应用的复杂性能( IMI 通信、 BLAS 操作) 中采集, 至关重要。 模拟应用和跳过常规非MPI 部分的不确定性。 我们用高性能Linpack (HPL) 展示了我们的方法的能力, 用于将超级计算机排在TOP 500 中, 这需要仔细调整。 我们简要地展示 (1) 如何对 HPLL 的开源版本进行微修改, 使一个单一商品服务器在超级计算机规模上进行快速校准, 。 然后我们进行一个持续的模拟的模拟 。

0
下载
关闭预览

相关内容

专知会员服务
26+阅读 · 2021年4月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月18日
Warped Dynamic Linear Models for Time Series of Counts
VIP会员
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员