This work explores the signal awareness of AI models for source code understanding. Using a software vulnerability detection use case, we evaluate the models' ability to capture the correct vulnerability signals to produce their predictions. Our prediction-preserving input minimization (P2IM) approach systematically reduces the original source code to a minimal snippet which a model needs to maintain its prediction. The model's reliance on incorrect signals is then uncovered when the vulnerability in the original code is missing in the minimal snippet, both of which the model however predicts as being vulnerable. We measure the signal awareness of models using a new metric we propose- Signal-aware Recall (SAR). We apply P2IM on three different neural network architectures across multiple datasets. The results show a sharp drop in the model's Recall from the high 90s to sub-60s with the new metric, highlighting that the models are presumably picking up a lot of noise or dataset nuances while learning their vulnerability detection logic. Although the drop in model performance may be perceived as an adversarial attack, but this isn't P2IM's objective. The idea is rather to uncover the signal-awareness of a black-box model in a data-driven manner via controlled queries. SAR's purpose is to measure the impact of task-agnostic model training, and not to suggest a shortcoming in the Recall metric. The expectation, in fact, is for SAR to match Recall in the ideal scenario where the model truly captures task-specific signals.


翻译:这项工作探索 AI 模型的信号意识, 以便了解源代码理解 。 使用软件脆弱性检测使用案例, 我们评估模型捕捉正确脆弱性信号的能力, 以得出预测。 我们的预测- 保存输入最小化(P2IM) 方法系统地将原始源代码降低到一个最小的片段, 模型需要保持预测。 当原始代码中的弱点在最小片段缺失时, 模型对错误信号的依赖就会暴露出来, 而模型预测的这两个片段都是脆弱的 。 我们使用新指标来衡量模型的信号意识, 我们提议Signa-aware recall (SAR) 。 我们将P2IM 应用于多个数据集的三个不同的神经网络结构。 结果显示, 模型的原始源代码从90年代到60年代的高端点, 需要保持其预测。 模型大概正在收集大量噪音或数据集的细微之处, 同时学习其脆弱性检测逻辑。 尽管模型的恢复性表现可能被视为一种对抗性攻击, 但这不是P2IM 的目标。 我们的想法是, 快速的信号, 而不是要通过新的标准模型, 来揭示信号意识意识意识,,, 控制性任务模型 的模型, 将 目标 方向 方向 方向 方向 方向 方向 方向 方向 方向 方向 方向 方向 方向 方向 方向 方向 方向 方向 方向 方向 方向 方向 方向 方向 方向 方向 方向 方向 方向 方向 方向 方向 方向 方向 方向 方向 方向 方向 方向 方向 方向 方向 方向 方向 方向 方向 方向 方向 方向 方向 方向 方向 方向 方向 方向 方向 方向 方向 方向 方向 方向 方向 方向 方向 方向 方向 方向 方向 方向 方向 方向 方向 方向 方向 方向 方向 方向 方向 方向 方向 方向 方向 方向 方向 方向 方向 方向 方向 方向 方向 方向 方向 方向 方向 方向 方向 方向 方向 方向 方向 方向 方向 方向 方向 方向 方向 方向 方向 方向 方向 方向 方向 方向 方向 方向 方向 方向 方向 方向 方向 方向 方向 方向 方向

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
专知会员服务
31+阅读 · 2021年6月12日
专知会员服务
123+阅读 · 2020年9月8日
元学习与图神经网络逻辑推导,55页ppt
专知会员服务
128+阅读 · 2020年4月25日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
【深度学习视频分析/多模态学习资源大列表】
专知会员服务
91+阅读 · 2019年10月16日
机器学习相关资源(框架、库、软件)大列表
专知会员服务
39+阅读 · 2019年10月9日
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
6+阅读 · 2019年4月4日
VIP会员
相关VIP内容
专知会员服务
31+阅读 · 2021年6月12日
专知会员服务
123+阅读 · 2020年9月8日
元学习与图神经网络逻辑推导,55页ppt
专知会员服务
128+阅读 · 2020年4月25日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
【深度学习视频分析/多模态学习资源大列表】
专知会员服务
91+阅读 · 2019年10月16日
机器学习相关资源(框架、库、软件)大列表
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员