Logs are semi-structured text files that represent software's execution paths and states during its run-time. Therefore, detecting anomalies in software logs reflect anomalies in the software's execution path or state. So, it has become a notable concern in software engineering. We use LSTM like many prior works, and on top of LSTM, we propose a novel anomaly detection approach based on the Siamese network. This paper also provides an authentic validation of the approach on the Hadoop Distributed File System (HDFS) log dataset. To the best of our knowledge, the proposed approach outperforms other methods on the same dataset at the F1 score of 0.996, resulting in a new state-of-the-art performance on the dataset. Along with the primary method, we introduce a novel training pair generation algorithm that reduces generated training pairs by the factor of 3000 while maintaining the F1 score, merely a modest decay from 0.996 to 0.995. Additionally, we propose a hybrid model by combining the Siamese network with a traditional feedforward neural network to make end-to-end training possible, reducing engineering effort in setting up a deep-learning-based log anomaly detector. Furthermore, we examine our method's robustness to log evolutions by evaluating the model on synthetically evolved log sequences; we got the F1 score of 0.95 at the noise ratio of 20%. Finally, we dive deep into some of the side benefits of the Siamese network. Accordingly, we introduce a method of monitoring the evolutions of logs without label requirements at run-time. Additionally, we present a visualization technique that facilitates human administrations of log anomaly detection.


翻译:日志是代表软件执行路径和运行时状态的半结构文本文件。 因此, 检测软件日志中的异常点反映了软件执行路径或状态的异常点。 因此, 它已经成为软件工程中一个值得注意的问题 。 我们使用LSTM 和许多先前的工程一样使用LSTM, 在 LSTM 之上, 我们提出一种新型的异常点检测方法, 以Siamese 网络为基础。 本文还提供了对Hadoop 分布式文件系统日志数据集的方法的真实验证 。 根据我们的知识, 拟议的方法优于软件日志上的异常点, 反映了软件运行路径上的异常点 0. 0.996 或状态 。 因此, 软件日志上的异常点显示方法比值的异常点显示 。 与基本方法一样, 我们引入了一个新的培训模式 。 我们通过一个基于传统网络的向上向上向上移动的神经网络, 将一个快速向前向前向下向下向下移动的系统, 将我们向前向前向前向前向前向前向前向前向前向前向前向前向前向前向前向前向前向前向前向前向前向前向前向下向前向前向前向前向前向前向前向前向前向后向前向前向前向前向前向前向前向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
Python计算导论,560页pdf,Introduction to Computing Using Python
专知会员服务
73+阅读 · 2020年5月5日
【ICLR-2020】网络反卷积,NETWORK DECONVOLUTION
专知会员服务
38+阅读 · 2020年2月21日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
异常检测(Anomaly Detection)综述
极市平台
20+阅读 · 2020年10月24日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
推荐|深度强化学习聊天机器人(附论文)!
全球人工智能
4+阅读 · 2018年1月30日
论文浅尝 | Improved Neural Relation Detection for KBQA
开放知识图谱
13+阅读 · 2018年1月21日
【推荐】树莓派/OpenCV/dlib人脸定位/瞌睡检测
机器学习研究会
9+阅读 · 2017年10月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
Arxiv
6+阅读 · 2018年7月9日
Arxiv
9+阅读 · 2018年4月12日
Arxiv
7+阅读 · 2018年3月19日
Arxiv
7+阅读 · 2017年12月26日
VIP会员
相关资讯
异常检测(Anomaly Detection)综述
极市平台
20+阅读 · 2020年10月24日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
推荐|深度强化学习聊天机器人(附论文)!
全球人工智能
4+阅读 · 2018年1月30日
论文浅尝 | Improved Neural Relation Detection for KBQA
开放知识图谱
13+阅读 · 2018年1月21日
【推荐】树莓派/OpenCV/dlib人脸定位/瞌睡检测
机器学习研究会
9+阅读 · 2017年10月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
Top
微信扫码咨询专知VIP会员