Conformal Prediction (CP) is a powerful statistical machine learning tool to construct uncertainty sets with coverage guarantees, which has fueled its extensive adoption in generating prediction regions for decision-making tasks, e.g., Trajectory Optimization (TO) in uncertain environments. However, existing methods predominantly employ a sequential scheme, where decisions rely unidirectionally on the prediction regions, and consequently the information from decision-making fails to be fed back to instruct CP. In this paper, we propose a novel Feedback-Based CP (Fb-CP) framework for shrinking-horizon TO with a joint risk constraint over the entire mission time. Specifically, a CP-based posterior risk calculation method is developed by fully leveraging the realized trajectories to adjust the posterior allowable risk, which is then allocated to future times to update prediction regions. In this way, the information in the realized trajectories is continuously fed back to the CP, enabling attractive feedback-based adjustments of the prediction regions and a provable online improvement in trajectory performance. Furthermore, we theoretically prove that such adjustments consistently maintain the coverage guarantees of the prediction regions, thereby ensuring provable safety. Additionally, we develop a decision-focused iterative risk allocation algorithm with theoretical convergence analysis for allocating the posterior allowable risk which closely aligns with Fb-CP. Furthermore, we extend the proposed method to handle distribution shift. The effectiveness and superiority of the proposed method are demonstrated through benchmark experiments.


翻译:保形预测(Conformal Prediction,CP)是一种强大的统计机器学习工具,能够构建具有覆盖保证的不确定性集合,这推动了其在为决策任务(例如不确定环境下的轨迹优化)生成预测区域中的广泛应用。然而,现有方法主要采用顺序方案,即决策单向依赖于预测区域,从而导致来自决策过程的信息无法被反馈以指导CP。本文提出了一种新颖的基于反馈的保形预测框架,用于处理具有整个任务时间联合风险约束的收缩时域轨迹优化问题。具体而言,通过充分利用已实现的轨迹来调整后验允许风险,我们开发了一种基于CP的后验风险计算方法,然后将该风险分配给未来时刻以更新预测区域。通过这种方式,已实现轨迹中的信息被持续反馈给CP,从而实现对预测区域具有吸引力的基于反馈的调整,并能在理论上证明在线轨迹性能的提升。此外,我们从理论上证明了此类调整能始终保持预测区域的覆盖保证,从而确保可证明的安全性。同时,我们开发了一种决策导向的迭代风险分配算法,并提供了理论收敛性分析,用于分配与Fb-CP紧密契合的后验允许风险。此外,我们将所提方法扩展到处理分布偏移的情况。基准实验证明了所提方法的有效性和优越性。

0
下载
关闭预览

相关内容

这是第25届年度会议,讨论有约束计算的所有方面,包括理论、算法、环境、语言、模型、系统和应用,如决策、资源分配、调度、配置和规划。为了纪念25周年,吉恩·弗洛伊德创作了一本“虚拟卷”来庆祝这个系列会议。信息可以在这里找到。约束编程协会有本系列中以前的会议列表。CP 2019计划将包括展示关于约束技术的高质量科学论文。除了通常的技术轨道外,CP 2019年会议还将有主题轨道。每个赛道都有一个专门的小组委员会,以确保有能力的评审员将审查这些领域的人提交的论文。 官网链接:https://cp2019.a4cp.org/index.html
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
35+阅读 · 2021年1月27日
Anomalous Instance Detection in Deep Learning: A Survey
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员