Motion capture remains costly and complex to deploy, limiting use outside specialized laboratories. We present Mesquite, an open-source, low-cost inertial motion-capture system that combines a body-worn network of 15 IMU sensor nodes with a hip-worn Android smartphone for position tracking. A low-power wireless link streams quaternion orientations to a central USB dongle and a browser-based application for real-time visualization and recording. Built on modern web technologies -- WebGL for rendering, WebXR for SLAM, WebSerial and WebSockets for device and network I/O, and Progressive Web Apps for packaging -- the system runs cross-platform entirely in the browser. In benchmarks against a commercial optical system, Mesquite achieves mean joint-angle error of 2-5 degrees while operating at approximately 5% of the cost. The system sustains 30 frames per second with end-to-end latency under 15ms and a packet delivery rate of at least 99.7% in standard indoor environments. By leveraging IoT principles, edge processing, and a web-native stack, Mesquite lowers the barrier to motion capture for applications in entertainment, biomechanics, healthcare monitoring, human-computer interaction, and virtual reality. We release hardware designs, firmware, and software under an open-source license (GNU GPL).
翻译:动作捕捉技术部署成本高昂且复杂,限制了其在专业实验室之外的应用。本文提出Mesquite,一种开源、低成本惯性动作捕捉系统,该系统结合了由15个IMU传感器节点组成的穿戴式网络与佩戴于髋部的Android智能手机进行位置追踪。通过低功耗无线链路将四元数朝向数据流传输至中央USB适配器及基于浏览器的应用程序,以实现实时可视化与录制。该系统基于现代Web技术构建——使用WebGL进行渲染、WebXR实现SLAM、WebSerial与WebSocket处理设备及网络I/O,并通过渐进式Web应用打包——可在浏览器中完全跨平台运行。在与商用光学系统的基准测试中,Mesquite在实现约2-5度平均关节角度误差的同时,成本仅约为商业系统的5%。该系统在标准室内环境中可维持每秒30帧的更新率,端到端延迟低于15毫秒,数据包传输成功率不低于99.7%。通过运用物联网原理、边缘处理及原生Web技术栈,Mesquite显著降低了动作捕捉技术在娱乐、生物力学、健康监测、人机交互及虚拟现实等领域的应用门槛。我们以开源许可(GNU GPL)公开硬件设计、固件及软件。